Abstract

We demonstrate a diode-pumped cw Raman laser in H2 with photon-conversion efficiency of 66±8%. Pumped by an injection-locked diode laser at 792  nm, the Stokes laser produces a peak output power of 16 mW at 1180  nm. Accompanying the high Stokes power are deviations from the existing theory, which are believed to be caused by the thermal-lensing effect of the Raman gas.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, G. D. Boyd, and J. M. Dziedzic, IEEE J. Quantum Electron. QE-2, 109 (1966).
    [CrossRef]
  2. Z. Y. Ou, S. F. Pereira, E. S. Polzik, and H. J. Kimble, Opt. Lett. 17, 640 (1992).
    [CrossRef] [PubMed]
  3. R. Paschotta, K. Fiedler, P. Kurz, R. Henking, S. Schiller, and J. Mynlek, Opt. Lett. 19, 1325 (1994).
    [CrossRef] [PubMed]
  4. G. Breitenbach, S. Schiller, and J. Mlynek, J. Opt. Soc. Am. B 12, 2095 (1995).
    [CrossRef]
  5. J. K. Brasseur, K. S. Repasky, and J. L. Carlsten, Opt. Lett. 23, 367 (1998).
    [CrossRef]
  6. L. S. Meng, K. S. Repasky, P. A. Ross, and J. L. Carlsten, Opt. Lett. 25, 472 (2000).
    [CrossRef]
  7. J. K. Brasseur, P. A. Roos, L. S. Meng, and J. L. Carlsten, J. Opt. Soc. Am. B 17, 1229 (2000).
    [CrossRef]
  8. J. K. Brasseur, P. A. Roos, K. S. Repasky, and J. L. Carlsten, J. Opt. Soc. Am. B 16, 1305 (1999).
    [CrossRef]
  9. P. A. Roos, J. K. Brasseur, and J. L. Carlsten, Opt. Lett. 24, 1130 (1999).
    [CrossRef]
  10. P. A. Roos, L. S. Meng, and J. L. Carlsten, IEEE J. Quantum Electron. 36, 1280 (2000).
    [CrossRef]
  11. K. S. Repasky, L. S. Meng, J. K. Brasseur, and J. L. Carlsten, J. Opt. Soc. Am. B 16, 717 (1999).
    [CrossRef]
  12. S. Kobayashi and T. Kimura, IEEE J. Quantum Electron. QE-17, 681 (1981).
    [CrossRef]
  13. T. Kurosu, J. Ishikawa, N. Ito, and R. W. Fox, Proc. SPIE 2378, 236 (1995).
    [CrossRef]
  14. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
    [CrossRef]
  15. To fit the theory with data, we used the following parameters: λp=792 nm, λs=1180 nm, Rpf=0.99695, Rpb=0.99996, Rsf=0.99933, Rsb=0.99993, Tpf=2.96×10-3, Tpb=2.54×10-5, Tsf=6.3×10-4, Tsb=4×10-5, l=7.62 cm, b=26.5 cm, and αg=1.55×10-9cm/W. W. K. Bischel and M. J. Dyer, J. Opt. Soc. Am. 3, 677 (1986). For the theory and notation, see Ref.  8.
    [CrossRef]
  16. P. A. Roos, J. K. Brasseur, and J. L. Carlsten, J. Opt. Soc. Am. B 17, 758 (2000).
    [CrossRef]

2000

1999

1998

1995

T. Kurosu, J. Ishikawa, N. Ito, and R. W. Fox, Proc. SPIE 2378, 236 (1995).
[CrossRef]

G. Breitenbach, S. Schiller, and J. Mlynek, J. Opt. Soc. Am. B 12, 2095 (1995).
[CrossRef]

1994

1992

1986

To fit the theory with data, we used the following parameters: λp=792 nm, λs=1180 nm, Rpf=0.99695, Rpb=0.99996, Rsf=0.99933, Rsb=0.99993, Tpf=2.96×10-3, Tpb=2.54×10-5, Tsf=6.3×10-4, Tsb=4×10-5, l=7.62 cm, b=26.5 cm, and αg=1.55×10-9cm/W. W. K. Bischel and M. J. Dyer, J. Opt. Soc. Am. 3, 677 (1986). For the theory and notation, see Ref.  8.
[CrossRef]

1983

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

1981

S. Kobayashi and T. Kimura, IEEE J. Quantum Electron. QE-17, 681 (1981).
[CrossRef]

1966

A. Ashkin, G. D. Boyd, and J. M. Dziedzic, IEEE J. Quantum Electron. QE-2, 109 (1966).
[CrossRef]

Ashkin, A.

A. Ashkin, G. D. Boyd, and J. M. Dziedzic, IEEE J. Quantum Electron. QE-2, 109 (1966).
[CrossRef]

Bischel, W. K.

To fit the theory with data, we used the following parameters: λp=792 nm, λs=1180 nm, Rpf=0.99695, Rpb=0.99996, Rsf=0.99933, Rsb=0.99993, Tpf=2.96×10-3, Tpb=2.54×10-5, Tsf=6.3×10-4, Tsb=4×10-5, l=7.62 cm, b=26.5 cm, and αg=1.55×10-9cm/W. W. K. Bischel and M. J. Dyer, J. Opt. Soc. Am. 3, 677 (1986). For the theory and notation, see Ref.  8.
[CrossRef]

Boyd, G. D.

A. Ashkin, G. D. Boyd, and J. M. Dziedzic, IEEE J. Quantum Electron. QE-2, 109 (1966).
[CrossRef]

Brasseur, J. K.

Breitenbach, G.

Carlsten, J. L.

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Dyer, M. J.

To fit the theory with data, we used the following parameters: λp=792 nm, λs=1180 nm, Rpf=0.99695, Rpb=0.99996, Rsf=0.99933, Rsb=0.99993, Tpf=2.96×10-3, Tpb=2.54×10-5, Tsf=6.3×10-4, Tsb=4×10-5, l=7.62 cm, b=26.5 cm, and αg=1.55×10-9cm/W. W. K. Bischel and M. J. Dyer, J. Opt. Soc. Am. 3, 677 (1986). For the theory and notation, see Ref.  8.
[CrossRef]

Dziedzic, J. M.

A. Ashkin, G. D. Boyd, and J. M. Dziedzic, IEEE J. Quantum Electron. QE-2, 109 (1966).
[CrossRef]

Fiedler, K.

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Fox, R. W.

T. Kurosu, J. Ishikawa, N. Ito, and R. W. Fox, Proc. SPIE 2378, 236 (1995).
[CrossRef]

Hall, J. L.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Henking, R.

Hough, J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Ishikawa, J.

T. Kurosu, J. Ishikawa, N. Ito, and R. W. Fox, Proc. SPIE 2378, 236 (1995).
[CrossRef]

Ito, N.

T. Kurosu, J. Ishikawa, N. Ito, and R. W. Fox, Proc. SPIE 2378, 236 (1995).
[CrossRef]

Kimble, H. J.

Kimura, T.

S. Kobayashi and T. Kimura, IEEE J. Quantum Electron. QE-17, 681 (1981).
[CrossRef]

Kobayashi, S.

S. Kobayashi and T. Kimura, IEEE J. Quantum Electron. QE-17, 681 (1981).
[CrossRef]

Kowalski, F. V.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Kurosu, T.

T. Kurosu, J. Ishikawa, N. Ito, and R. W. Fox, Proc. SPIE 2378, 236 (1995).
[CrossRef]

Kurz, P.

Meng, L. S.

Mlynek, J.

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Mynlek, J.

Ou, Z. Y.

Paschotta, R.

Pereira, S. F.

Polzik, E. S.

Repasky, K. S.

Roos, P. A.

Ross, P. A.

Schiller, S.

Ward, H.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

Appl. Phys. B

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, Appl. Phys. B 31, 97 (1983).
[CrossRef]

IEEE J. Quantum Electron.

S. Kobayashi and T. Kimura, IEEE J. Quantum Electron. QE-17, 681 (1981).
[CrossRef]

A. Ashkin, G. D. Boyd, and J. M. Dziedzic, IEEE J. Quantum Electron. QE-2, 109 (1966).
[CrossRef]

P. A. Roos, L. S. Meng, and J. L. Carlsten, IEEE J. Quantum Electron. 36, 1280 (2000).
[CrossRef]

J. Opt. Soc. Am.

To fit the theory with data, we used the following parameters: λp=792 nm, λs=1180 nm, Rpf=0.99695, Rpb=0.99996, Rsf=0.99933, Rsb=0.99993, Tpf=2.96×10-3, Tpb=2.54×10-5, Tsf=6.3×10-4, Tsb=4×10-5, l=7.62 cm, b=26.5 cm, and αg=1.55×10-9cm/W. W. K. Bischel and M. J. Dyer, J. Opt. Soc. Am. 3, 677 (1986). For the theory and notation, see Ref.  8.
[CrossRef]

J. Opt. Soc. Am. B

Opt. Lett.

Proc. SPIE

T. Kurosu, J. Ishikawa, N. Ito, and R. W. Fox, Proc. SPIE 2378, 236 (1995).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup used to demonstrate 66% photon-conversion efficiency diode-pumped cw Raman laser. FRDL, free-running diode laser; APP’s, anamorphic prism pairs; PBS’s, polarizing beam splitters; EOM, electro-optic modulator; PM-SM Fiber, polarization-maintaining and single-mode fiber; OSA’s, optical spectrum analyzers; FR’s, Faraday rotators; MML, mode-matching lens; HFC, high- finesse cavity; M1, mirror; M2, dichroic mirror with high transmission for the Stokes power and high reflection for the pump. λ/2’s, half-wave plates. For a detailed setup description see Ref.  10.

Fig. 2
Fig. 2

Stokes and transmitted pump powers as functions of incident pump power. Both deviate from theoretical predictions. These deviations, believed to be caused by thermal-lensing effect of Raman gas, are eliminated after the theory is modified by the assumption that both reduced Raman gain and cavity coupling efficiency are functions of Stokes output power.

Fig. 3
Fig. 3

Reflected pump power and photon-conversion efficiency as functions of incident pump power. Peak photon-conversion efficiency of 66±8% is achieved. Although it was limited by the pump power available in this experiment, 86% efficiency is expected to occur at higher incident pump power when reflected pump becomes zero, i.e., when the impedance-matched condition for the Raman cavity is reached.

Metrics