Abstract

Many applications of diffractive phase elements involve the calculation of a continuous phase profile, which is subsequently quantized for fabrication. The quantization process maps the continuous range of phase values to a limited number of discrete steps. We present a new scheme with unevenly spaced levels for the design of diffractive elements and apply it to the design of intracavity mode-selecting elements. We show that this modified quantization can produce significantly better results than are possible with a regular or even the bias-phase-optimized quantization scheme that we reported here earlier. In principle this process can be employed to a greater or lesser extent in any quantization process, allowing the fabrication of diffractive elements with much improved performance.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription