Abstract

We introduce a new variant of spectral interferometry, using spectrally dispersed ultrafast laser pulses and quadrature detection to measure optical thickness variations related to surface structure. We can resolve surface features with depths of 3  mm to 25  nm, using a lateral resolution of 100 μm. Quadrature detection gives a larger dynamic range and solves the sign ambiguity problem. This method has potential applications in device manufacture, optical communications, and error compensation in pulse shaping.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Zoller, M. Boos, R. Herrmann, W. Klug, and W. Lehnert, Proc. SPIE 1019, 106 (1988).
    [CrossRef]
  2. E. A. Swanson, J. A. Izatt, M. R. Hee, D. Huang, J. G. Fujimoto, C. P. Lin, J. S. Shuman, and C. A. Puliafito, Opt. Lett. 18, 1864 (1993).
    [CrossRef] [PubMed]
  3. J. X. Tull, M. A. Dugan, and W. S. Warren, Adv. Magn. Opt. Res. 20, 1 (1997).
    [CrossRef]
  4. D. J. Kane and R. Trebino, IEEE J. Quantum Electron. 29, 571 (1993).
    [CrossRef]
  5. J.-K. Rhee, T. S. Sosnowski, A.-C. Tien, and T. B. Norris, J. Opt. Soc. Am. B 13, 1780 (1996).
    [CrossRef]
  6. C. Iaconis and I. A. Walmsley, Opt. Lett. 23, 792 (1998).
    [CrossRef]
  7. J. P. Geindre, P. Audebert, A. Rousse, F. Fallies, J. C. Gauthier, A. Mysyrowicz, A. D. Santos, G. Hamoniaux, and A. Antonetti, Opt. Lett. 19, 1997 (1994).
    [CrossRef] [PubMed]
  8. A. F. Zuluaga and R. R. Kortum, Opt. Lett. 24, 519 (1999).
    [CrossRef]
  9. S. P. LeBlanc, E. W. Gaul, N. H. Matlis, A. Rundquist, and M. C. Downer, Opt. Lett. 25, 764 (2000).
    [CrossRef]

2000 (1)

1999 (1)

1998 (1)

1997 (1)

J. X. Tull, M. A. Dugan, and W. S. Warren, Adv. Magn. Opt. Res. 20, 1 (1997).
[CrossRef]

1996 (1)

1994 (1)

1993 (2)

1988 (1)

A. Zoller, M. Boos, R. Herrmann, W. Klug, and W. Lehnert, Proc. SPIE 1019, 106 (1988).
[CrossRef]

Antonetti, A.

Audebert, P.

Boos, M.

A. Zoller, M. Boos, R. Herrmann, W. Klug, and W. Lehnert, Proc. SPIE 1019, 106 (1988).
[CrossRef]

Downer, M. C.

Dugan, M. A.

J. X. Tull, M. A. Dugan, and W. S. Warren, Adv. Magn. Opt. Res. 20, 1 (1997).
[CrossRef]

Fallies, F.

Fujimoto, J. G.

Gaul, E. W.

Gauthier, J. C.

Geindre, J. P.

Hamoniaux, G.

Hee, M. R.

Herrmann, R.

A. Zoller, M. Boos, R. Herrmann, W. Klug, and W. Lehnert, Proc. SPIE 1019, 106 (1988).
[CrossRef]

Huang, D.

Iaconis, C.

Izatt, J. A.

Kane, D. J.

D. J. Kane and R. Trebino, IEEE J. Quantum Electron. 29, 571 (1993).
[CrossRef]

Klug, W.

A. Zoller, M. Boos, R. Herrmann, W. Klug, and W. Lehnert, Proc. SPIE 1019, 106 (1988).
[CrossRef]

Kortum, R. R.

LeBlanc, S. P.

Lehnert, W.

A. Zoller, M. Boos, R. Herrmann, W. Klug, and W. Lehnert, Proc. SPIE 1019, 106 (1988).
[CrossRef]

Lin, C. P.

Matlis, N. H.

Mysyrowicz, A.

Norris, T. B.

Puliafito, C. A.

Rhee, J.-K.

Rousse, A.

Rundquist, A.

Santos, A. D.

Shuman, J. S.

Sosnowski, T. S.

Swanson, E. A.

Tien, A.-C.

Trebino, R.

D. J. Kane and R. Trebino, IEEE J. Quantum Electron. 29, 571 (1993).
[CrossRef]

Tull, J. X.

J. X. Tull, M. A. Dugan, and W. S. Warren, Adv. Magn. Opt. Res. 20, 1 (1997).
[CrossRef]

Walmsley, I. A.

Warren, W. S.

J. X. Tull, M. A. Dugan, and W. S. Warren, Adv. Magn. Opt. Res. 20, 1 (1997).
[CrossRef]

Zoller, A.

A. Zoller, M. Boos, R. Herrmann, W. Klug, and W. Lehnert, Proc. SPIE 1019, 106 (1988).
[CrossRef]

Zuluaga, A. F.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the optical setup: The top optical path is the test arm. It consists of the 4f geometry, with a test sample inserted after the AOM. The bottom path is the reference arm. A computer controls the arbitrary waveform generator, which creates the rf pulses that, in turn, create the Bragg grating in the AOM. Spectra are recorded by a CCD camera and digitized.

Fig. 2
Fig. 2

Typical data set, showing both quadrature spectra, from the test case. The two different fringe spacings reflect two values of the OPD. The fringe period on the right is from the physical size difference between the two arms. The period on the left has additional OPD from the component under test. We can take into account amplitude variation by taking the spectra of the two arms separately, and the result is quite stable over the experiment time.

Fig. 3
Fig. 3

(a) The retrieved phase shows two different slopes, which agree with the two different optical paths. (b) After shifting the rather long delay that is introduced by 1  mm of glass to zero, we can see a position-dependent OPD. The size of the OPD variation agrees well with what is expected for optical flat glass. In spite of losses owing to scattering, the film thickness is measured to be 680  nm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Si,k=dc+EtestiErefi×cosφrefi-φtesti+kδ.
SΔω,τ=dc+ErefΔωEtestΔω×cosφrefΔω-φtestΔω+τΔω.
Si,τ=dc+ErefiEtesti×cosφrefi-φtesti+τωi,

Metrics