Abstract

An optical parametric amplifier based on periodically poled KTiOPO4 was used to generate 3-ns pulses at 1.544 μm. The device was pumped by a Q-switched Nd:YAG laser, and the signal output-pulse energy reached 71 μJ; the maximum gain was 66  dB. The seed source was an Er–Yb:glass microchip laser. A theoretical fit to experimental data gave an effective nonlinear coefficient of 9.7 pm/V, close to the highest values reported for periodically poled KTiOPO4. Furthermore, the broad parametric gain observed could be used for broadband pulse amplification.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Hellström, V. Pasiskevicius, H. Karlsson, and F. Laurell, Opt. Lett. 25, 174 (2000).
    [CrossRef]
  2. I. N. Ross, J. L. M. Collier, P. Matousek, C. N. Danson, D. Neely, R. Allott, D. Pepler, C. Hernandez-Gomez, and K. Osvay, Appl. Opt. 39, 2422 (2000).
    [CrossRef]
  3. J. J. Zayhowski, Opt. Lett. 22, 169 (1997).
    [CrossRef] [PubMed]
  4. P. E. Powers, K. W. Aniolek, T. J. Kulp, B. A. Richman, and S. E. Bisson, Opt. Lett. 23, 1886 (1998).
    [CrossRef]
  5. M. Missey, V. Dominic, P. E. Powers, and K. L. Schepler, Opt. Lett. 25, 248 (2000).
    [CrossRef]
  6. H. Karlsson, M. Olson, G. Arvidsson, F. Laurell, U. Bäder, A. Borsutzky, R. Wallenstein, S. Wickström, and M. Gustafsson, Opt. Lett. 24, 330 (1999).
    [CrossRef]
  7. H. Karlsson, F. Laurell, and L. K. Cheng, Appl. Phys. Lett. 74, 1519 (1999).
    [CrossRef]
  8. H. Karlsson and F. Laurell, Appl. Phys. Lett. 71, 3474 (1997).
    [CrossRef]
  9. G. Hansson, H. Karlsson, S. Wang, and F. Laurell, Appl. Opt. 39, 5058 (2000).
    [CrossRef]
  10. S. J. Brosnan and R. L. Byer, IEEE J. Quantum Electron. QE-15, 415 (1979).
    [CrossRef]
  11. G. A. Massey, T. M. Loehr, L. J. Willis, and J. C. Johnson, Appl. Opt. 19, 4136 (1980).
    [CrossRef] [PubMed]
  12. G. Karlsson, V. Pasiskevicius, F. Laurell, J. A. Tellefsen, B. I. Denker, B. Galagan, V. V. Osiko, and S. Sverchkov, Appl. Opt. 39, 6188 (2000).
    [CrossRef]
  13. S. Taccheo, P. Laporta, and C. Svelto, Appl. Phys. Lett. 68, 2621 (1996).
    [CrossRef]
  14. A. V. Smith, Proc. SPIE 3928, 62 (2000).
    [CrossRef]

2000 (6)

1999 (2)

1998 (1)

1997 (2)

H. Karlsson and F. Laurell, Appl. Phys. Lett. 71, 3474 (1997).
[CrossRef]

J. J. Zayhowski, Opt. Lett. 22, 169 (1997).
[CrossRef] [PubMed]

1996 (1)

S. Taccheo, P. Laporta, and C. Svelto, Appl. Phys. Lett. 68, 2621 (1996).
[CrossRef]

1980 (1)

1979 (1)

S. J. Brosnan and R. L. Byer, IEEE J. Quantum Electron. QE-15, 415 (1979).
[CrossRef]

Allott, R.

Aniolek, K. W.

Arvidsson, G.

Bäder, U.

Bisson, S. E.

Borsutzky, A.

Brosnan, S. J.

S. J. Brosnan and R. L. Byer, IEEE J. Quantum Electron. QE-15, 415 (1979).
[CrossRef]

Byer, R. L.

S. J. Brosnan and R. L. Byer, IEEE J. Quantum Electron. QE-15, 415 (1979).
[CrossRef]

Cheng, L. K.

H. Karlsson, F. Laurell, and L. K. Cheng, Appl. Phys. Lett. 74, 1519 (1999).
[CrossRef]

Collier, J. L. M.

Danson, C. N.

Denker, B. I.

Dominic, V.

Galagan, B.

Gustafsson, M.

Hansson, G.

Hellström, J.

Hernandez-Gomez, C.

Johnson, J. C.

Karlsson, G.

Karlsson, H.

Kulp, T. J.

Laporta, P.

S. Taccheo, P. Laporta, and C. Svelto, Appl. Phys. Lett. 68, 2621 (1996).
[CrossRef]

Laurell, F.

Loehr, T. M.

Massey, G. A.

Matousek, P.

Missey, M.

Neely, D.

Olson, M.

Osiko, V. V.

Osvay, K.

Pasiskevicius, V.

Pepler, D.

Powers, P. E.

Richman, B. A.

Ross, I. N.

Schepler, K. L.

Smith, A. V.

A. V. Smith, Proc. SPIE 3928, 62 (2000).
[CrossRef]

Svelto, C.

S. Taccheo, P. Laporta, and C. Svelto, Appl. Phys. Lett. 68, 2621 (1996).
[CrossRef]

Sverchkov, S.

Taccheo, S.

S. Taccheo, P. Laporta, and C. Svelto, Appl. Phys. Lett. 68, 2621 (1996).
[CrossRef]

Tellefsen, J. A.

Wallenstein, R.

Wang, S.

Wickström, S.

Willis, L. J.

Zayhowski, J. J.

Appl. Opt. (4)

Appl. Phys. Lett. (3)

H. Karlsson, F. Laurell, and L. K. Cheng, Appl. Phys. Lett. 74, 1519 (1999).
[CrossRef]

H. Karlsson and F. Laurell, Appl. Phys. Lett. 71, 3474 (1997).
[CrossRef]

S. Taccheo, P. Laporta, and C. Svelto, Appl. Phys. Lett. 68, 2621 (1996).
[CrossRef]

IEEE J. Quantum Electron. (1)

S. J. Brosnan and R. L. Byer, IEEE J. Quantum Electron. QE-15, 415 (1979).
[CrossRef]

Opt. Lett. (5)

Proc. SPIE (1)

A. V. Smith, Proc. SPIE 3928, 62 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

OPO output pulse energy for signal (circles), idler (triangles), and total output (diamonds). Squares, total conversion efficiency of the OPO.

Fig. 2
Fig. 2

OPA signal output pulse energy versus pump energy. Squares, experiment; solid curve, theoretical fit. The seed pulse energy is equivalent to 18  pJ.

Fig. 3
Fig. 3

OPA signal output as a function of the seeding energy. Squares, experiment; solid curve, calculation; dotted curve, OPA signal gain. Pump pulse energy, 2.35  mJ.

Fig. 4
Fig. 4

Measured spectra of the seeded OPA signal (lighter, solid curve) and optical parametric generator (OPG) fluorescence (darker, dotted curve).

Metrics