Abstract

We demonstrate an innovative method for a real-time interrogation of fiber Bragg gratings based on low-coherence spectral interferometry of noiselike pulses. By analyzing the spectral interference at the output of a Michelson interferometer we obtained the impulse response of the grating with a time resolution of 350 fs. Using the Gabor transformation, we could directly detect nonuniform regions inside the grating and could measure the spatial dependence of the resonance wavelength along the grating.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. R. Giles, J. Lightwave Technol. 15, 1391 (1997).
    [CrossRef]
  2. D. Sandel, R. Noè, G. Heise, and B. Borchert, J. Lightwave Technol. 16, 2435 (1998).
    [CrossRef]
  3. P. Lambelet, P. Y. Fonjallaz, H. G. Limberger, R. P. Salathé, Ch. Zimmer, and H. H. Gilgen, Photon. Technol. Lett. 5, 565 (1993).
    [CrossRef]
  4. E. I. Petermann, J. Skaar, B. E. Sahlgren, R. A. H. Stubbe, and A. T. Friberg, J. Lightwave Technol. 17, 2371 (1999).
    [CrossRef]
  5. R. Trebino and D. J. Kane, J. Opt. Soc. Am. A 10, 1101 (1993).
    [CrossRef]
  6. D. Meshulach, D. Yelin, and Y. Silberberg, J. Opt. Soc. Am. B 14, 2095 (1997).
    [CrossRef]
  7. T. Funaba, N. Tanno, and H. Ito, Appl. Opt. 36, 8919 (1997).
    [CrossRef]
  8. M. Horowitz, Y. Barad, and Y. Silberberg, Opt. Lett. 22, 799 (1997).
    [CrossRef] [PubMed]
  9. M. Horowitz and Y. Silberberg, IEEE Photon. Technol. Lett. 10, 1389 (1998).
    [CrossRef]
  10. M. N. Putnam, M. L. Dennis, I. N. Dulling, C. G. Ashkin, and E. J. Friebele, Opt. Lett. 23, 138 (1998).
    [CrossRef]
  11. J. U. Kang and R. Posey, Opt. Lett. 23, 1375 (1998).
    [CrossRef]
  12. J. Shamir, Optical Systems and Processes (SPIE, Bellingham, Wash., 1999), p. 28.
  13. E. Peral, J. Capmany, and J. Marti, IEEE J. Quantum Electron. 32, 2078 (1998).
    [CrossRef]
  14. D. Gabor, J. Inst. Electr. Eng. 93, Part 3, 429 (1946).
  15. S. Keren and M. Horowitz, in Conference on Lasers and Electro-Optics, 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), p. 433.

1999 (1)

1998 (5)

1997 (4)

1993 (2)

P. Lambelet, P. Y. Fonjallaz, H. G. Limberger, R. P. Salathé, Ch. Zimmer, and H. H. Gilgen, Photon. Technol. Lett. 5, 565 (1993).
[CrossRef]

R. Trebino and D. J. Kane, J. Opt. Soc. Am. A 10, 1101 (1993).
[CrossRef]

1946 (1)

D. Gabor, J. Inst. Electr. Eng. 93, Part 3, 429 (1946).

Ashkin, C. G.

Barad, Y.

Borchert, B.

Capmany, J.

E. Peral, J. Capmany, and J. Marti, IEEE J. Quantum Electron. 32, 2078 (1998).
[CrossRef]

Dennis, M. L.

Dulling, I. N.

Fonjallaz, P. Y.

P. Lambelet, P. Y. Fonjallaz, H. G. Limberger, R. P. Salathé, Ch. Zimmer, and H. H. Gilgen, Photon. Technol. Lett. 5, 565 (1993).
[CrossRef]

Friberg, A. T.

Friebele, E. J.

Funaba, T.

Gabor, D.

D. Gabor, J. Inst. Electr. Eng. 93, Part 3, 429 (1946).

Giles, C. R.

C. R. Giles, J. Lightwave Technol. 15, 1391 (1997).
[CrossRef]

Gilgen, H. H.

P. Lambelet, P. Y. Fonjallaz, H. G. Limberger, R. P. Salathé, Ch. Zimmer, and H. H. Gilgen, Photon. Technol. Lett. 5, 565 (1993).
[CrossRef]

Heise, G.

Horowitz, M.

M. Horowitz and Y. Silberberg, IEEE Photon. Technol. Lett. 10, 1389 (1998).
[CrossRef]

M. Horowitz, Y. Barad, and Y. Silberberg, Opt. Lett. 22, 799 (1997).
[CrossRef] [PubMed]

S. Keren and M. Horowitz, in Conference on Lasers and Electro-Optics, 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), p. 433.

Ito, H.

Kane, D. J.

Kang, J. U.

Keren, S.

S. Keren and M. Horowitz, in Conference on Lasers and Electro-Optics, 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), p. 433.

Lambelet, P.

P. Lambelet, P. Y. Fonjallaz, H. G. Limberger, R. P. Salathé, Ch. Zimmer, and H. H. Gilgen, Photon. Technol. Lett. 5, 565 (1993).
[CrossRef]

Limberger, H. G.

P. Lambelet, P. Y. Fonjallaz, H. G. Limberger, R. P. Salathé, Ch. Zimmer, and H. H. Gilgen, Photon. Technol. Lett. 5, 565 (1993).
[CrossRef]

Marti, J.

E. Peral, J. Capmany, and J. Marti, IEEE J. Quantum Electron. 32, 2078 (1998).
[CrossRef]

Meshulach, D.

Noè, R.

Peral, E.

E. Peral, J. Capmany, and J. Marti, IEEE J. Quantum Electron. 32, 2078 (1998).
[CrossRef]

Petermann, E. I.

Posey, R.

Putnam, M. N.

Sahlgren, B. E.

Salathé, R. P.

P. Lambelet, P. Y. Fonjallaz, H. G. Limberger, R. P. Salathé, Ch. Zimmer, and H. H. Gilgen, Photon. Technol. Lett. 5, 565 (1993).
[CrossRef]

Sandel, D.

Shamir, J.

J. Shamir, Optical Systems and Processes (SPIE, Bellingham, Wash., 1999), p. 28.

Silberberg, Y.

Skaar, J.

Stubbe, R. A. H.

Tanno, N.

Trebino, R.

Yelin, D.

Zimmer, Ch.

P. Lambelet, P. Y. Fonjallaz, H. G. Limberger, R. P. Salathé, Ch. Zimmer, and H. H. Gilgen, Photon. Technol. Lett. 5, 565 (1993).
[CrossRef]

Appl. Opt. (1)

IEEE J. Quantum Electron. (1)

E. Peral, J. Capmany, and J. Marti, IEEE J. Quantum Electron. 32, 2078 (1998).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. Horowitz and Y. Silberberg, IEEE Photon. Technol. Lett. 10, 1389 (1998).
[CrossRef]

J. Inst. Electr. Eng. (1)

D. Gabor, J. Inst. Electr. Eng. 93, Part 3, 429 (1946).

J. Lightwave Technol. (3)

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Opt. Lett. (3)

Photon. Technol. Lett. (1)

P. Lambelet, P. Y. Fonjallaz, H. G. Limberger, R. P. Salathé, Ch. Zimmer, and H. H. Gilgen, Photon. Technol. Lett. 5, 565 (1993).
[CrossRef]

Other (2)

J. Shamir, Optical Systems and Processes (SPIE, Bellingham, Wash., 1999), p. 28.

S. Keren and M. Horowitz, in Conference on Lasers and Electro-Optics, 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), p. 433.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of the experimental setup: PC, polarization controller.

Fig. 2
Fig. 2

Typical interference spectrum measured for a nearly uniform grating with the reflection spectrum shown in Fig.  3(a).

Fig. 3
Fig. 3

Experimental impulse response and the corresponding reflection spectra (a) of a nearly uniform grating and (b) of a linearly chirped grating used for dispersion compensation.

Fig. 4
Fig. 4

Gabor transformation of the interference spectra measured for the chirped grating shown in Fig.  3(b), and dependence of the resonance wavelength of the grating on the location calculated from the Gabor transform. A Gaussian window with a width of 0.1  nm was used in the calculations.

Fig. 5
Fig. 5

Gabor transformation of the interference spectra measured for the nearly uniform grating shown in Fig.  3(a), and the cross section at λ=1545. A Gaussian window with a width of 3  nm was used in the calculations.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

pt=TCet+Cet*ht*h*-t+Cet*ht-τ0+Cet*h*-t-τ0hst,

Metrics