Abstract

The phase-noise characteristics of a harmonically mode-locked fiber laser are investigated with a new measurement technique called phase-encoded optical sampling. A polarization-maintaining ring laser is mode locked by use of the short-pulse electrical output of a resonant-tunneling diode oscillator, enabling it to produce 30-ps pulses at a 208-MHz repetition rate. The interferometric phase-encoded sampling technique provides 60-dB suppression of amplitude-jitter noise and allows supermode phase noise to be observed and quantified. The white-noise pulse-to-pulse timing jitter and the rms supermode timing jitter of the laser are measured to be less than 50 and 70  fs, respectively.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. von der Linde, Appl. Phys. B 39, 201 (1986).
    [CrossRef]
  2. U. Keller, K. D. Li, M. Rodwell, and D. M. Bloom, IEEE J. Quantum Electron. 25, 280 (1989).
    [CrossRef]
  3. T. R. Clark, T. F. Carruthers, P. J. Matthews, and I. N. Duling, Electron. Lett. 35, 720 (1999).
    [CrossRef]
  4. K. Tamura and M. Nakazawa, Opt. Lett. 23, 1360 (1998).
    [CrossRef]
  5. M. F. Becker, D. J. Kuizenga, and A. E. Siegman, IEEE J. Quantum Electron. 8, 687 (1972).
  6. J. C. Twichell and R. Helkey, IEEE Photon. Technol. Lett. 12, 1237 (2000).
    [CrossRef]
  7. E. R. Brown, C. D. Parker, S. Verghese, M. W. Geis, and J. F. Harvey, Appl. Phys. Lett. 70, 2787 (1997).
    [CrossRef]

2000

J. C. Twichell and R. Helkey, IEEE Photon. Technol. Lett. 12, 1237 (2000).
[CrossRef]

1999

T. R. Clark, T. F. Carruthers, P. J. Matthews, and I. N. Duling, Electron. Lett. 35, 720 (1999).
[CrossRef]

1998

1997

E. R. Brown, C. D. Parker, S. Verghese, M. W. Geis, and J. F. Harvey, Appl. Phys. Lett. 70, 2787 (1997).
[CrossRef]

1989

U. Keller, K. D. Li, M. Rodwell, and D. M. Bloom, IEEE J. Quantum Electron. 25, 280 (1989).
[CrossRef]

1986

D. von der Linde, Appl. Phys. B 39, 201 (1986).
[CrossRef]

1972

M. F. Becker, D. J. Kuizenga, and A. E. Siegman, IEEE J. Quantum Electron. 8, 687 (1972).

Becker, M. F.

M. F. Becker, D. J. Kuizenga, and A. E. Siegman, IEEE J. Quantum Electron. 8, 687 (1972).

Bloom, D. M.

U. Keller, K. D. Li, M. Rodwell, and D. M. Bloom, IEEE J. Quantum Electron. 25, 280 (1989).
[CrossRef]

Brown, E. R.

E. R. Brown, C. D. Parker, S. Verghese, M. W. Geis, and J. F. Harvey, Appl. Phys. Lett. 70, 2787 (1997).
[CrossRef]

Carruthers, T. F.

T. R. Clark, T. F. Carruthers, P. J. Matthews, and I. N. Duling, Electron. Lett. 35, 720 (1999).
[CrossRef]

Clark, T. R.

T. R. Clark, T. F. Carruthers, P. J. Matthews, and I. N. Duling, Electron. Lett. 35, 720 (1999).
[CrossRef]

Duling, I. N.

T. R. Clark, T. F. Carruthers, P. J. Matthews, and I. N. Duling, Electron. Lett. 35, 720 (1999).
[CrossRef]

Geis, M. W.

E. R. Brown, C. D. Parker, S. Verghese, M. W. Geis, and J. F. Harvey, Appl. Phys. Lett. 70, 2787 (1997).
[CrossRef]

Harvey, J. F.

E. R. Brown, C. D. Parker, S. Verghese, M. W. Geis, and J. F. Harvey, Appl. Phys. Lett. 70, 2787 (1997).
[CrossRef]

Helkey, R.

J. C. Twichell and R. Helkey, IEEE Photon. Technol. Lett. 12, 1237 (2000).
[CrossRef]

Keller, U.

U. Keller, K. D. Li, M. Rodwell, and D. M. Bloom, IEEE J. Quantum Electron. 25, 280 (1989).
[CrossRef]

Kuizenga, D. J.

M. F. Becker, D. J. Kuizenga, and A. E. Siegman, IEEE J. Quantum Electron. 8, 687 (1972).

Li, K. D.

U. Keller, K. D. Li, M. Rodwell, and D. M. Bloom, IEEE J. Quantum Electron. 25, 280 (1989).
[CrossRef]

Matthews, P. J.

T. R. Clark, T. F. Carruthers, P. J. Matthews, and I. N. Duling, Electron. Lett. 35, 720 (1999).
[CrossRef]

Nakazawa, M.

Parker, C. D.

E. R. Brown, C. D. Parker, S. Verghese, M. W. Geis, and J. F. Harvey, Appl. Phys. Lett. 70, 2787 (1997).
[CrossRef]

Rodwell, M.

U. Keller, K. D. Li, M. Rodwell, and D. M. Bloom, IEEE J. Quantum Electron. 25, 280 (1989).
[CrossRef]

Siegman, A. E.

M. F. Becker, D. J. Kuizenga, and A. E. Siegman, IEEE J. Quantum Electron. 8, 687 (1972).

Tamura, K.

Twichell, J. C.

J. C. Twichell and R. Helkey, IEEE Photon. Technol. Lett. 12, 1237 (2000).
[CrossRef]

Verghese, S.

E. R. Brown, C. D. Parker, S. Verghese, M. W. Geis, and J. F. Harvey, Appl. Phys. Lett. 70, 2787 (1997).
[CrossRef]

von der Linde, D.

D. von der Linde, Appl. Phys. B 39, 201 (1986).
[CrossRef]

Appl. Phys. B

D. von der Linde, Appl. Phys. B 39, 201 (1986).
[CrossRef]

Appl. Phys. Lett.

E. R. Brown, C. D. Parker, S. Verghese, M. W. Geis, and J. F. Harvey, Appl. Phys. Lett. 70, 2787 (1997).
[CrossRef]

Electron. Lett.

T. R. Clark, T. F. Carruthers, P. J. Matthews, and I. N. Duling, Electron. Lett. 35, 720 (1999).
[CrossRef]

IEEE J. Quantum Electron.

U. Keller, K. D. Li, M. Rodwell, and D. M. Bloom, IEEE J. Quantum Electron. 25, 280 (1989).
[CrossRef]

M. F. Becker, D. J. Kuizenga, and A. E. Siegman, IEEE J. Quantum Electron. 8, 687 (1972).

IEEE Photon. Technol. Lett.

J. C. Twichell and R. Helkey, IEEE Photon. Technol. Lett. 12, 1237 (2000).
[CrossRef]

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Phase-encoded optical sampling system with an additional amplitude modulator for investigating laser amplitude-noise suppression. MS/s, megasamples per second.

Fig. 2
Fig. 2

Power spectra of optically sampled data with artificially induced laser amplitude noise: (a) intensity sampling, (b) phase-encoded sampling. Amplitude-noise suppression owing to phase-encoded sampling is 60  dB. The 3-GHz amplitude-modulation noise signal aliases to 13.86  MHz for a sampling rate of 52  MS/s.

Fig. 3
Fig. 3

Power spectra of optically sampled data for the following inputs: (a) 3-GHz sinusoid, (b) no signal. Note the noise-floor increase (dashed line) and the pattern-noise spurs (indicated by arrows) when the sinusoid is present. The fast Fourier-transform size is 64K (resolution, 793  Hz).

Fig. 4
Fig. 4

Power spectra of an individual pattern noise spur for (a) intensity sampling and (b) phase-encoded sampling. The dashed lines show the calculated frequency of the pattern-noise spurs. The fast Fourier-transform size is 256K (resolution, 198  Hz).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

στ2=14π2f02S/Njitter=14π2f02PS/PN-PQ,
στ2=M4π2f02SASR,

Metrics