Abstract

We demonstrate a 165μm oblate spheroidal microcavity with a free spectral range of 383.7  GHz (3.06  nm), a resonance bandwidth of 23  MHz (quality factor Q107) at 1550  nm, and finesse F104. The highly oblate spheroidal dielectric microcavity combines a very high Q factor, typical of microspheres, with a vastly reduced number of excited whispering-gallery modes (by 2  orders of magnitude). The very large free spectral range in this novel microcavity–a few hundred gigahertz instead of a few gigahertz as in typical microspheres—is desirable for applications in spectral analysis, narrow-linewidth optical and rf oscillators, and cavity QED.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, Phys. Lett. A 137, 397 (1989).
    [CrossRef]
  2. R. K. Chang and A. J. Campillo, eds., Optical Processes in Microcavities (World Scientific, Singapore, 1996).
  3. H. Mabuchi and H. J. Kimble, Opt. Lett. 19, 749 (1994).
    [CrossRef] [PubMed]
  4. V. V. Vassiliev, V. L. Velichansky, V. S. Ilchenko, M. L. Gorodetsky, L. Hollberg, and A. V. Yarovitsky, Opt. Commun. 158, 305 (1998).
    [CrossRef]
  5. V. S. Ilchenko, X. S. Yao, and L. Maleki, Proc. SPIE 3611, 190 (1999).
    [CrossRef]
  6. V. S. Ilchenko, X. S. Yao, and L. Maleki, Opt. Lett. 24, 723 (1999).
    [CrossRef]
  7. B. E. Little, J.-P. Laine, D. R. Lim, H. A. Haus, L. C. Kimerling, and S. T. Chu, Opt. Lett. 25, 73 (2000).
    [CrossRef]
  8. M. L. Gorodetsky, A. D. Pryamikov, and V. S. Ilchenko, J. Opt. Soc. Am. B 17, 1051 (2000).
    [CrossRef]
  9. B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimmerling, and W. Greene, IEEE Photon. Technol. Lett. 10, 549 (1998).
    [CrossRef]
  10. H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, Phys. Rev. A 41, 5187 (1990).
    [CrossRef] [PubMed]
  11. C. Flammer, Spheroidal Wave Functions (Stanford U. Press, Stanford, Calif., 1957).
  12. M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions (Dover, New York, 1970).
  13. I. V. Komarov, L. I. Ponomarev, and S. Yu. Slavyanov, Spheroidal and Coulomb Spheroidal Functions (Nauka, Moscow, 1976; in Russian).
  14. M. L. Gorodetsky and V. S. Ilchenko, J. Opt. Soc. Am. B 16, 147 (1999).
    [CrossRef]

2000

1999

1998

V. V. Vassiliev, V. L. Velichansky, V. S. Ilchenko, M. L. Gorodetsky, L. Hollberg, and A. V. Yarovitsky, Opt. Commun. 158, 305 (1998).
[CrossRef]

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimmerling, and W. Greene, IEEE Photon. Technol. Lett. 10, 549 (1998).
[CrossRef]

1994

1990

H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, Phys. Rev. A 41, 5187 (1990).
[CrossRef] [PubMed]

1989

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, Phys. Lett. A 137, 397 (1989).
[CrossRef]

Barber, P. W.

H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, Phys. Rev. A 41, 5187 (1990).
[CrossRef] [PubMed]

Braginsky, V. B.

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, Phys. Lett. A 137, 397 (1989).
[CrossRef]

Chu, S. T.

B. E. Little, J.-P. Laine, D. R. Lim, H. A. Haus, L. C. Kimerling, and S. T. Chu, Opt. Lett. 25, 73 (2000).
[CrossRef]

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimmerling, and W. Greene, IEEE Photon. Technol. Lett. 10, 549 (1998).
[CrossRef]

Flammer, C.

C. Flammer, Spheroidal Wave Functions (Stanford U. Press, Stanford, Calif., 1957).

Foresi, J. S.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimmerling, and W. Greene, IEEE Photon. Technol. Lett. 10, 549 (1998).
[CrossRef]

Gorodetsky, M. L.

M. L. Gorodetsky, A. D. Pryamikov, and V. S. Ilchenko, J. Opt. Soc. Am. B 17, 1051 (2000).
[CrossRef]

M. L. Gorodetsky and V. S. Ilchenko, J. Opt. Soc. Am. B 16, 147 (1999).
[CrossRef]

V. V. Vassiliev, V. L. Velichansky, V. S. Ilchenko, M. L. Gorodetsky, L. Hollberg, and A. V. Yarovitsky, Opt. Commun. 158, 305 (1998).
[CrossRef]

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, Phys. Lett. A 137, 397 (1989).
[CrossRef]

Greene, W.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimmerling, and W. Greene, IEEE Photon. Technol. Lett. 10, 549 (1998).
[CrossRef]

Haus, H. A.

B. E. Little, J.-P. Laine, D. R. Lim, H. A. Haus, L. C. Kimerling, and S. T. Chu, Opt. Lett. 25, 73 (2000).
[CrossRef]

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimmerling, and W. Greene, IEEE Photon. Technol. Lett. 10, 549 (1998).
[CrossRef]

Hill, S. C.

H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, Phys. Rev. A 41, 5187 (1990).
[CrossRef] [PubMed]

Hollberg, L.

V. V. Vassiliev, V. L. Velichansky, V. S. Ilchenko, M. L. Gorodetsky, L. Hollberg, and A. V. Yarovitsky, Opt. Commun. 158, 305 (1998).
[CrossRef]

Ilchenko, V. S.

M. L. Gorodetsky, A. D. Pryamikov, and V. S. Ilchenko, J. Opt. Soc. Am. B 17, 1051 (2000).
[CrossRef]

V. S. Ilchenko, X. S. Yao, and L. Maleki, Proc. SPIE 3611, 190 (1999).
[CrossRef]

V. S. Ilchenko, X. S. Yao, and L. Maleki, Opt. Lett. 24, 723 (1999).
[CrossRef]

M. L. Gorodetsky and V. S. Ilchenko, J. Opt. Soc. Am. B 16, 147 (1999).
[CrossRef]

V. V. Vassiliev, V. L. Velichansky, V. S. Ilchenko, M. L. Gorodetsky, L. Hollberg, and A. V. Yarovitsky, Opt. Commun. 158, 305 (1998).
[CrossRef]

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, Phys. Lett. A 137, 397 (1989).
[CrossRef]

Ippen, E. P.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimmerling, and W. Greene, IEEE Photon. Technol. Lett. 10, 549 (1998).
[CrossRef]

Kimble, H. J.

Kimerling, L. C.

Kimmerling, L. C.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimmerling, and W. Greene, IEEE Photon. Technol. Lett. 10, 549 (1998).
[CrossRef]

Komarov, I. V.

I. V. Komarov, L. I. Ponomarev, and S. Yu. Slavyanov, Spheroidal and Coulomb Spheroidal Functions (Nauka, Moscow, 1976; in Russian).

Lai, H. M.

H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, Phys. Rev. A 41, 5187 (1990).
[CrossRef] [PubMed]

Laine, J.-P.

Leung, P. T.

H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, Phys. Rev. A 41, 5187 (1990).
[CrossRef] [PubMed]

Lim, D. R.

Little, B. E.

B. E. Little, J.-P. Laine, D. R. Lim, H. A. Haus, L. C. Kimerling, and S. T. Chu, Opt. Lett. 25, 73 (2000).
[CrossRef]

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimmerling, and W. Greene, IEEE Photon. Technol. Lett. 10, 549 (1998).
[CrossRef]

Mabuchi, H.

Maleki, L.

V. S. Ilchenko, X. S. Yao, and L. Maleki, Opt. Lett. 24, 723 (1999).
[CrossRef]

V. S. Ilchenko, X. S. Yao, and L. Maleki, Proc. SPIE 3611, 190 (1999).
[CrossRef]

Ponomarev, L. I.

I. V. Komarov, L. I. Ponomarev, and S. Yu. Slavyanov, Spheroidal and Coulomb Spheroidal Functions (Nauka, Moscow, 1976; in Russian).

Pryamikov, A. D.

Slavyanov, S. Yu.

I. V. Komarov, L. I. Ponomarev, and S. Yu. Slavyanov, Spheroidal and Coulomb Spheroidal Functions (Nauka, Moscow, 1976; in Russian).

Steinmeyer, G.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimmerling, and W. Greene, IEEE Photon. Technol. Lett. 10, 549 (1998).
[CrossRef]

Thoen, E. R.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimmerling, and W. Greene, IEEE Photon. Technol. Lett. 10, 549 (1998).
[CrossRef]

Vassiliev, V. V.

V. V. Vassiliev, V. L. Velichansky, V. S. Ilchenko, M. L. Gorodetsky, L. Hollberg, and A. V. Yarovitsky, Opt. Commun. 158, 305 (1998).
[CrossRef]

Velichansky, V. L.

V. V. Vassiliev, V. L. Velichansky, V. S. Ilchenko, M. L. Gorodetsky, L. Hollberg, and A. V. Yarovitsky, Opt. Commun. 158, 305 (1998).
[CrossRef]

Yao, X. S.

V. S. Ilchenko, X. S. Yao, and L. Maleki, Proc. SPIE 3611, 190 (1999).
[CrossRef]

V. S. Ilchenko, X. S. Yao, and L. Maleki, Opt. Lett. 24, 723 (1999).
[CrossRef]

Yarovitsky, A. V.

V. V. Vassiliev, V. L. Velichansky, V. S. Ilchenko, M. L. Gorodetsky, L. Hollberg, and A. V. Yarovitsky, Opt. Commun. 158, 305 (1998).
[CrossRef]

Young, K.

H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, Phys. Rev. A 41, 5187 (1990).
[CrossRef] [PubMed]

IEEE Photon. Technol. Lett.

B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimmerling, and W. Greene, IEEE Photon. Technol. Lett. 10, 549 (1998).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

V. V. Vassiliev, V. L. Velichansky, V. S. Ilchenko, M. L. Gorodetsky, L. Hollberg, and A. V. Yarovitsky, Opt. Commun. 158, 305 (1998).
[CrossRef]

Opt. Lett.

Phys. Lett. A

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, Phys. Lett. A 137, 397 (1989).
[CrossRef]

Phys. Rev. A

H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, Phys. Rev. A 41, 5187 (1990).
[CrossRef] [PubMed]

Proc. SPIE

V. S. Ilchenko, X. S. Yao, and L. Maleki, Proc. SPIE 3611, 190 (1999).
[CrossRef]

Other

R. K. Chang and A. J. Campillo, eds., Optical Processes in Microcavities (World Scientific, Singapore, 1996).

C. Flammer, Spheroidal Wave Functions (Stanford U. Press, Stanford, Calif., 1957).

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions (Dover, New York, 1970).

I. V. Komarov, L. I. Ponomarev, and S. Yu. Slavyanov, Spheroidal and Coulomb Spheroidal Functions (Nauka, Moscow, 1976; in Russian).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Photograph and schematic of the microcavity geometry. Near the symmetry plane (at the location of the WG modes), the toroidal surface of outer diameter D and cross section diameter d coincides with that of the osculating oblate spheroid with large semiaxis a=D/2 and small semiaxis b=1/2Dd.

Fig. 2
Fig. 2

Spectrum of the TE WG modes in a spheroidal dielectric microcavity D=2a=165 μm,d=42 μm,2b=83 μm. The FSR (frequency separation between the largest peaks, 1 and 2) is 383.7  GHz (3.06  nm) near the central wavelength of 1550  nm. The individual resonance bandwidth is 23  MHz (loaded Q=8.5×106). Finesse F=1.7×104.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

nklmqatlq-χn2-1,
k22l-m+1a21-ε2m;
nklmqa-χn2-1nak̃mq2+k2Tmq+k2a22Tmqtlq+2l-m+1211-ε2-1.
νlmq-νl,m-1,q=c2πna11-ε2-1382 GHz.

Metrics