Abstract

We theoretically analyze waves propagating between an isotropic medium and an anisotropic medium. Closely examining the boundary condition reveals that the phenomenon of nonsymmetrical reflection occurs when the wave propagates from an anisotropic to an isotropic medium. Calculating the reflection of thin films requires correcting the phase change in each reflected trip in the Airy formula. Analytical results of measurement of the elliptical surface of a wave-vector distribution in an anisotropic medium indicate that reflection and transmission still occur when the reflected and the refracted angles are larger than 90°.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. C. McClain, L. W. Hillman, and R. A. Chipman, J. Opt. Soc. Am. A 10, 2371 (1993).
    [CrossRef]
  2. S. C. McClain, L. W. Hillman, and R. A. Chipman, J. Opt. Soc. Am. A 10, 2383 (1993).
    [CrossRef]
  3. C.-L. Lin and J.-J. Wu, Opt. Lett. 23, 22 (1998).
    [CrossRef]
  4. G. I. Surdutovich, R. Z. Vitlina, A. V. Ghiner, S. F. Durrant, and V. Baranauskas, Appl. Opt. 37, 65 (1998).
    [CrossRef]
  5. I. J. Hodgkinson and Q. H. Wu, Birefringent Thin Films and Polarizing Elements (World Scientific, Singapore, 1997).
    [CrossRef]
  6. M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1980).
  7. J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1975).

1998 (2)

1993 (2)

Baranauskas, V.

Born, M.

M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1980).

Chipman, R. A.

Durrant, S. F.

Ghiner, A. V.

Hillman, L. W.

Hodgkinson, I. J.

I. J. Hodgkinson and Q. H. Wu, Birefringent Thin Films and Polarizing Elements (World Scientific, Singapore, 1997).
[CrossRef]

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1975).

Lin, C.-L.

McClain, S. C.

Surdutovich, G. I.

Vitlina, R. Z.

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1980).

Wu, J.-J.

Wu, Q. H.

I. J. Hodgkinson and Q. H. Wu, Birefringent Thin Films and Polarizing Elements (World Scientific, Singapore, 1997).
[CrossRef]

Appl. Opt. (1)

J. Opt. Soc. Am. A (2)

Opt. Lett. (1)

Other (3)

I. J. Hodgkinson and Q. H. Wu, Birefringent Thin Films and Polarizing Elements (World Scientific, Singapore, 1997).
[CrossRef]

M. Born and E. Wolf, Principles of Optics, 6th ed. (Pergamon, New York, 1980).

J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1975).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Principal axes of the film x,y,z and the film surface coordinates x,y,z of the three-layer system.

Fig. 2
Fig. 2

Elliptical surface of the wave-vector distribution in an anisotropic medium and the refracted wave vector in an anisotropic medium corresponding to the parallel wave vector β.

Fig. 3
Fig. 3

Multireflected ray in anisotropic medium 2.

Fig. 4
Fig. 4

Refraction phenomena when β=βc at point C.

Fig. 5
Fig. 5

Refraction phenomenon when -βmax<β<βc.

Fig. 6
Fig. 6

Reflection phenomenon at the interface of layers 2 and 3 when βD<β<βmax.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

x=x,y=ycosϕ-zsinϕ,z=ysinϕ+zcosϕ,
D=e^xϵxEx+e^yϵyEy+e^zϵzEz=e^xDx+e^yDy+e^zDz.
Dx=Dx,Dy=ϵ0ηy2Ey+ηyzEz,Dz=ϵ0ηyzEy+ηz2Ez,
ηy2=ny2 cos2ϕ+nz2 sin2ϕ,
ηz2=ny2 sin2ϕ+nz2 cos2ϕ,
ηyz=ny2-nz2sinϕcosϕ.
ϵ0k×k×E=-k02D,H=ϵ0/μ02k/k0×E,
k02ηy2-kz2k02ηz2-β2-βkz+k02ηyz2=0.
kz+=+kzK-ΔK,kz-=-kzK-ΔK,
kz=ηy/ηzk02ηz2-β21/2,
K=1-ηyz/ηyηz21/2,
ΔK=βηyzηz2.
θ+=tan-1β/kz+,
θ-=-tan-1β/kz-.
r13=r12+r23expiΔ1+r12r23expiΔ,
Δ=kz+d-kz-d=2kzKd.

Metrics