Abstract

The design of double-coated optical fibers to minimize long-term hydrostatic-pressure-induced microbending losses is investigated. Microbending loss in these fibers is dominated by compressive radial stress at the interface between the glass fiber and the primary coating, which is a function of the material properties of the polymeric coatings and their thickness. To minimize long-term hydrostatic-pressure-induced microbending losses, one should decrease the Young’s modulus and Poisson ratio of the primary coating but increase the radius, Young’s modulus, Poisson ratio, and relaxation time of the secondary coating. Alternatively, the radius and relaxation time of the primary coating have their optimum values.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (1)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (3)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription