Abstract

The characterization of a two-layer structure was investigated by use of time-resolved reflectance over a wide spectral range. We exploited the nonlinear dependence of the measured spectra on the upper- and lower-layer properties to formulate an algorithm for the recovery of absorber concentrations in both layers. The method assumes that the spectral features of the key absorbers are known, but it does not rely on a priori knowledge of the layer thickness. Phantom tests confirmed the accuracy of the estimate of the absorber concentrations to within 10% for thickness values ranging from 0.3 to 1.2  cm. Multidistance absorption spectra from 610 to 1000  nm were obtained in vivo from the forearms of human subjects, allowing us to estimate the concentration of key tissue constituents in a two-layer approximation. Good agreement between the reconstructed spectra and the experimental data taken from two volunteers with opposite predominance of adipose and muscular tissues demonstrated the validity of this approach.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription