Abstract

The characterization of a two-layer structure was investigated by use of time-resolved reflectance over a wide spectral range. We exploited the nonlinear dependence of the measured spectra on the upper- and lower-layer properties to formulate an algorithm for the recovery of absorber concentrations in both layers. The method assumes that the spectral features of the key absorbers are known, but it does not rely on a priori knowledge of the layer thickness. Phantom tests confirmed the accuracy of the estimate of the absorber concentrations to within 10% for thickness values ranging from 0.3 to 1.2  cm. Multidistance absorption spectra from 610 to 1000  nm were obtained in vivo from the forearms of human subjects, allowing us to estimate the concentration of key tissue constituents in a two-layer approximation. Good agreement between the reconstructed spectra and the experimental data taken from two volunteers with opposite predominance of adipose and muscular tissues demonstrated the validity of this approach.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Kienle, T. Glanzmann, G. A. Wagnières, and H. van den Bergh, Appl. Opt. 37, 1 (1998).
  2. F. Martelli, A. Sassaroli, and Y. Yamada, Proc. SPIE 3597, 79 (1999).
    [CrossRef]
  3. J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, and H. Rinneberg, Phys. Med. Biol. 46, 879 (2001).
    [CrossRef] [PubMed]
  4. T. Pham, T. Spott, L. O. Svaasand, and B. J. Tromberg, Appl. Opt. 39, 4733 (2000).
    [CrossRef]
  5. A. Kienle, M. S. Patterson, N. Dögnitz, R. Bays, G. A. Wagnières, and H. van den Bergh, Appl. Opt. 37, 779 (1998).
    [CrossRef]
  6. J. Ripoll, V. Ntziachristos, J. P. Culver, D. N. Pattanayak, A. G. Yodh, and M. Nieto-Vesperinas, J. Opt. Soc. Am. A 18, 821 (2001).
    [CrossRef]
  7. M. A. Franceschini, S. Fantini, L. A. Paunescu, J. S. Maier, and E. Gratton, Appl. Opt. 37, 7447 (1998).
    [CrossRef]
  8. A. H. Hielscher, H. Liu, B. Chance, F. K. Tittel, and S. L. Jacques, Appl. Opt. 35, 719 (1996).
    [CrossRef] [PubMed]
  9. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, Appl. Phys. Lett. 74, 874 (1999).
    [CrossRef]
  10. R. C. Haskell, L. O. Svaasand, T.-T. Tsay, T.-C. Feng, M.S. McAdams, and B. J. Tromberg, J. Opt. Soc. Am. A 11, 2727 (1994).
    [CrossRef]
  11. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, Phys. Med. Biol. 42, 1971 (1997).
    [CrossRef] [PubMed]
  12. S. Prahl, Oregon Medical Laser Center website:  http://omlc.ogi.edu/spectra/ .

2001 (2)

2000 (1)

1999 (2)

F. Martelli, A. Sassaroli, and Y. Yamada, Proc. SPIE 3597, 79 (1999).
[CrossRef]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, Appl. Phys. Lett. 74, 874 (1999).
[CrossRef]

1998 (3)

1997 (1)

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, Phys. Med. Biol. 42, 1971 (1997).
[CrossRef] [PubMed]

1996 (1)

1994 (1)

Bays, R.

Chance, B.

Cubeddu, R.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, Appl. Phys. Lett. 74, 874 (1999).
[CrossRef]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, Phys. Med. Biol. 42, 1971 (1997).
[CrossRef] [PubMed]

Culver, J. P.

Dögnitz, N.

Fantini, S.

Feng, T.-C.

Franceschini, M. A.

Glanzmann, T.

A. Kienle, T. Glanzmann, G. A. Wagnières, and H. van den Bergh, Appl. Opt. 37, 1 (1998).

Gratton, E.

Haskell, R. C.

Hielscher, A. H.

Jacques, S. L.

Kienle, A.

A. Kienle, T. Glanzmann, G. A. Wagnières, and H. van den Bergh, Appl. Opt. 37, 1 (1998).

A. Kienle, M. S. Patterson, N. Dögnitz, R. Bays, G. A. Wagnières, and H. van den Bergh, Appl. Opt. 37, 779 (1998).
[CrossRef]

Liu, H.

Maier, J. S.

Martelli, F.

F. Martelli, A. Sassaroli, and Y. Yamada, Proc. SPIE 3597, 79 (1999).
[CrossRef]

McAdams, M.S.

Nieto-Vesperinas, M.

Ntziachristos, V.

Obrig, H.

J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, and H. Rinneberg, Phys. Med. Biol. 46, 879 (2001).
[CrossRef] [PubMed]

Pattanayak, D. N.

Patterson, M. S.

Paunescu, L. A.

Pham, T.

Pifferi, A.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, Appl. Phys. Lett. 74, 874 (1999).
[CrossRef]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, Phys. Med. Biol. 42, 1971 (1997).
[CrossRef] [PubMed]

Prahl, S.

S. Prahl, Oregon Medical Laser Center website:  http://omlc.ogi.edu/spectra/ .

Rinneberg, H.

J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, and H. Rinneberg, Phys. Med. Biol. 46, 879 (2001).
[CrossRef] [PubMed]

Ripoll, J.

Sassaroli, A.

F. Martelli, A. Sassaroli, and Y. Yamada, Proc. SPIE 3597, 79 (1999).
[CrossRef]

Spott, T.

Steinbrink, J.

J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, and H. Rinneberg, Phys. Med. Biol. 46, 879 (2001).
[CrossRef] [PubMed]

Svaasand, L. O.

Taroni, P.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, Appl. Phys. Lett. 74, 874 (1999).
[CrossRef]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, Phys. Med. Biol. 42, 1971 (1997).
[CrossRef] [PubMed]

Tittel, F. K.

Torricelli, A.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, Appl. Phys. Lett. 74, 874 (1999).
[CrossRef]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, Phys. Med. Biol. 42, 1971 (1997).
[CrossRef] [PubMed]

Tromberg, B. J.

Tsay, T.-T.

Valentini, G.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, Appl. Phys. Lett. 74, 874 (1999).
[CrossRef]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, Phys. Med. Biol. 42, 1971 (1997).
[CrossRef] [PubMed]

van den Bergh, H.

A. Kienle, T. Glanzmann, G. A. Wagnières, and H. van den Bergh, Appl. Opt. 37, 1 (1998).

A. Kienle, M. S. Patterson, N. Dögnitz, R. Bays, G. A. Wagnières, and H. van den Bergh, Appl. Opt. 37, 779 (1998).
[CrossRef]

Villringer, A.

J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, and H. Rinneberg, Phys. Med. Biol. 46, 879 (2001).
[CrossRef] [PubMed]

Wabnitz, H.

J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, and H. Rinneberg, Phys. Med. Biol. 46, 879 (2001).
[CrossRef] [PubMed]

Wagnières, G. A.

A. Kienle, T. Glanzmann, G. A. Wagnières, and H. van den Bergh, Appl. Opt. 37, 1 (1998).

A. Kienle, M. S. Patterson, N. Dögnitz, R. Bays, G. A. Wagnières, and H. van den Bergh, Appl. Opt. 37, 779 (1998).
[CrossRef]

Yamada, Y.

F. Martelli, A. Sassaroli, and Y. Yamada, Proc. SPIE 3597, 79 (1999).
[CrossRef]

Yodh, A. G.

Appl. Opt. (5)

Appl. Phys. Lett. (1)

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, Appl. Phys. Lett. 74, 874 (1999).
[CrossRef]

J. Opt. Soc. Am. A (2)

Phys. Med. Biol. (2)

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, Phys. Med. Biol. 42, 1971 (1997).
[CrossRef] [PubMed]

J. Steinbrink, H. Wabnitz, H. Obrig, A. Villringer, and H. Rinneberg, Phys. Med. Biol. 46, 879 (2001).
[CrossRef] [PubMed]

Proc. SPIE (1)

F. Martelli, A. Sassaroli, and Y. Yamada, Proc. SPIE 3597, 79 (1999).
[CrossRef]

Other (1)

S. Prahl, Oregon Medical Laser Center website:  http://omlc.ogi.edu/spectra/ .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Absorption spectra of two-layer phantoms with δ ranging from 0.2 to 1.4  cm in steps of 0.2  cm (diamonds and squares). The spectra obtained with δ=0 cm (solid curve) and δ=10 cm (dashed curve) are also plotted.

Fig. 2
Fig. 2

Plot of Δμmeas versus Δμtrue for δ ranging from 0.2 to 1.4  cm in steps of 0.2  cm. The solid lines represent the best fit of experimental data with a second-order polynomial.

Fig. 3
Fig. 3

Multidistance in vivo absorption spectra for subject A (circles) and B (diamonds) measured with ρ=1 cm (white), 1.5  cm (light gray), 2  cm (dark gray), and 3  cm (black). The reconstructed spectra for subject A (solid curve) and B (dashed curve) are displayed for the lower (black) and the upper (gray) layers. Inset, in vivo spectra of subject C (filled triangles) and D (open triangles).

Tables (2)

Tables Icon

Table 1 Effective and Reconstructed Absorber Concentrations [in μL] for a Two-Layer Phantom with δ=1.2 cm

Tables Icon

Table 2 Reconstructed Concentrations of Key Tissue Constituents for Subjects A and B

Metrics