Abstract

We present a new beam-shaping technique with an intracavity optically addressed liquid-crystal spatial light modulator. The Nd:YAG resonator is able to deliver beams with various spatial profiles such as flat-topped super-Gaussian and square-shaped beams.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Kermene, A. Saviot, M. Vampouille, B. Colombeau, C. Froehly, and T. Dohnalik, Opt. Lett. 17, 859–861 (1992).
    [CrossRef]
  2. C. Paré and P. A. Bélanger, IEEE J. Quantum Electron. 30, 1141–1148 (1994).
    [CrossRef]
  3. J. R. Leger, D. Chen, and Z. Wang, Opt. Lett. 19, 108–110 (1994).
    [CrossRef]
  4. K. Ballüder and M. R. Taghizadeh, Appl. Opt. 38, 5768–5774 (1999).
    [CrossRef]
  5. V. Bagnoud, J. Luce, L. Videau, and C. Rouyer, Opt. Lett. 26, 337–339 (2001).
    [CrossRef]
  6. S. Makki and J. Leger, IEEE J. Quantum Electron. 35, 1075–1085 (1999).
    [CrossRef]
  7. R. Oron, Y. Danziger, N. Davidson, A. A. Friesem, and E. Hasman, Opt. Commun. 169, 115–121 (1999).
    [CrossRef]
  8. J. Bourderionnet, N. Huot, A. Brignon, and J.-P. Huignard, Opt. Lett. 25, 1579–1581 (2000).
    [CrossRef]
  9. A. V. Kudryashov and H. Weber, Laser Resonators: Novel Design and Development, Vol. PM67 of SPIE Press Monographs (SPIE Optical Engineering Press, Bellingham, Wash., 1999), p. 47.
  10. P. Aubourg, J.-P. Huignard, M. Hareng, and R. A. Mullen, Appl. Opt. 21, 3706–3712 (1982).
    [CrossRef] [PubMed]
  11. G. Feugnet and J. P. Pocholle, Opt. Lett. 23, 55–57 (1998).
    [CrossRef]

2001 (1)

2000 (1)

1999 (3)

S. Makki and J. Leger, IEEE J. Quantum Electron. 35, 1075–1085 (1999).
[CrossRef]

R. Oron, Y. Danziger, N. Davidson, A. A. Friesem, and E. Hasman, Opt. Commun. 169, 115–121 (1999).
[CrossRef]

K. Ballüder and M. R. Taghizadeh, Appl. Opt. 38, 5768–5774 (1999).
[CrossRef]

1998 (1)

1994 (2)

C. Paré and P. A. Bélanger, IEEE J. Quantum Electron. 30, 1141–1148 (1994).
[CrossRef]

J. R. Leger, D. Chen, and Z. Wang, Opt. Lett. 19, 108–110 (1994).
[CrossRef]

1992 (1)

1982 (1)

Aubourg, P.

Bagnoud, V.

Ballüder, K.

Bélanger, P. A.

C. Paré and P. A. Bélanger, IEEE J. Quantum Electron. 30, 1141–1148 (1994).
[CrossRef]

Bourderionnet, J.

Brignon, A.

Chen, D.

Colombeau, B.

Danziger, Y.

R. Oron, Y. Danziger, N. Davidson, A. A. Friesem, and E. Hasman, Opt. Commun. 169, 115–121 (1999).
[CrossRef]

Davidson, N.

R. Oron, Y. Danziger, N. Davidson, A. A. Friesem, and E. Hasman, Opt. Commun. 169, 115–121 (1999).
[CrossRef]

Dohnalik, T.

Feugnet, G.

Friesem, A. A.

R. Oron, Y. Danziger, N. Davidson, A. A. Friesem, and E. Hasman, Opt. Commun. 169, 115–121 (1999).
[CrossRef]

Froehly, C.

Hareng, M.

Hasman, E.

R. Oron, Y. Danziger, N. Davidson, A. A. Friesem, and E. Hasman, Opt. Commun. 169, 115–121 (1999).
[CrossRef]

Huignard, J.-P.

Huot, N.

Kermene, V.

Kudryashov, A. V.

A. V. Kudryashov and H. Weber, Laser Resonators: Novel Design and Development, Vol. PM67 of SPIE Press Monographs (SPIE Optical Engineering Press, Bellingham, Wash., 1999), p. 47.

Leger, J.

S. Makki and J. Leger, IEEE J. Quantum Electron. 35, 1075–1085 (1999).
[CrossRef]

Leger, J. R.

Luce, J.

Makki, S.

S. Makki and J. Leger, IEEE J. Quantum Electron. 35, 1075–1085 (1999).
[CrossRef]

Mullen, R. A.

Oron, R.

R. Oron, Y. Danziger, N. Davidson, A. A. Friesem, and E. Hasman, Opt. Commun. 169, 115–121 (1999).
[CrossRef]

Paré, C.

C. Paré and P. A. Bélanger, IEEE J. Quantum Electron. 30, 1141–1148 (1994).
[CrossRef]

Pocholle, J. P.

Rouyer, C.

Saviot, A.

Taghizadeh, M. R.

Vampouille, M.

Videau, L.

Wang, Z.

Weber, H.

A. V. Kudryashov and H. Weber, Laser Resonators: Novel Design and Development, Vol. PM67 of SPIE Press Monographs (SPIE Optical Engineering Press, Bellingham, Wash., 1999), p. 47.

Appl. Opt. (2)

IEEE J. Quantum Electron. (2)

C. Paré and P. A. Bélanger, IEEE J. Quantum Electron. 30, 1141–1148 (1994).
[CrossRef]

S. Makki and J. Leger, IEEE J. Quantum Electron. 35, 1075–1085 (1999).
[CrossRef]

Opt. Commun. (1)

R. Oron, Y. Danziger, N. Davidson, A. A. Friesem, and E. Hasman, Opt. Commun. 169, 115–121 (1999).
[CrossRef]

Opt. Lett. (5)

Other (1)

A. V. Kudryashov and H. Weber, Laser Resonators: Novel Design and Development, Vol. PM67 of SPIE Press Monographs (SPIE Optical Engineering Press, Bellingham, Wash., 1999), p. 47.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Effect of illumination λ<450 nm on the phase transmission of a LCLV.

Fig. 2
Fig. 2

Experimental setup of the intracavity LCLV and its optical addressing system: M1, output coupler; L1, 150-mm diverging lens; L2, 300-mm converging lens; M2, highly reflective mirror at 1.06 μm; M3, M4, dichroic mirrors highly reflective at 633  nm and antireflective at 1.06 μm for control of the wave-front transmission of the LCLV that is imaged onto a Shack–Hartmann wave-front sensor.

Fig. 3
Fig. 3

(a) Calculated phase profile that must be transmitted by the LCLV to provide a 20th-order super-Gaussian mode. (b) Phase transmitted by the LCLV measured with the Shack–Hartmann wave-front sensor. (c) Difference between calculated and measured wave fronts. The peak-to-valley amplitude of the residual phase is λ/10.

Fig. 4
Fig. 4

Experimental results: (a) Gaussian mode when the LCLV is removed, (b) circular 20th-order super-Gaussian mode, (c) square-shaped 20th-order super-Gaussian mode, (d) 45° rotated square-shaped 20th-order super-Gaussian mode.

Fig. 5
Fig. 5

Experimental transverse profile of the experimental 20th-order super-Gaussian mode (solid curve) compared with the theoretical profile (dashed curve).

Metrics