Abstract

A novel and simple fiber-optic sensor based on a superstructure fiber grating for simultaneous measurement of temperature, axial strain, and transverse load is proposed and demonstrated. By measurement of the shift and split of broadband and narrow-band loss peaks, one can determine the temperature, axial strain, and transverse load simultaneously over the ranges 0–140°, 01200 μϵ, and 0–0.3  kg/mm, respectively.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W.-C. Du, X.-M. Tao, and H.-Y. Tam, “Fiber Bragg grating cavity sensor for simultaneous measurement of strain and temperature,” IEEE Photon. Technol. Lett. 11, 105–107 (1999).
    [CrossRef]
  2. B.-O. Guan, H.-Y. Tam, S.-L. Ho, W.-H. Chung, and X.-Y. Dong, “Simultaneous strain and temperature measurement using a single fibre Bragg grating,” Electron. Lett. 36, 1018–1019 (2000).
    [CrossRef]
  3. V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21, 692–694 (1996).
    [CrossRef] [PubMed]
  4. Y. Liu, L. Zhang, and I. Bennion, “Fibre optic load sensors with high transverse strain sensitivity based on long-period gratings in B/Ge co-doped fibre,” Electron. Lett. 35, 661–663 (1999).
    [CrossRef]
  5. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
    [CrossRef]
  6. B.-O. Guan, H.-Y. Tam, X.-M. Tao, and X.-Y. Dong, “Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating,” IEEE Photon. Technol. Lett. 12, 675–677 (2000).
    [CrossRef]
  7. J.-N. Jang, M.-S. Kim, T.-H. Rhee, and K.-H. Kwack, “Optical properties and reliability of recoated long-period fiber gratings for EDFA gain flattening,” in Proceedings of Lasers and Electro-Optics Society Annual Meeting (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1998), Vol. 1, pp. 259–260.

2000 (2)

B.-O. Guan, H.-Y. Tam, S.-L. Ho, W.-H. Chung, and X.-Y. Dong, “Simultaneous strain and temperature measurement using a single fibre Bragg grating,” Electron. Lett. 36, 1018–1019 (2000).
[CrossRef]

B.-O. Guan, H.-Y. Tam, X.-M. Tao, and X.-Y. Dong, “Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating,” IEEE Photon. Technol. Lett. 12, 675–677 (2000).
[CrossRef]

1999 (2)

W.-C. Du, X.-M. Tao, and H.-Y. Tam, “Fiber Bragg grating cavity sensor for simultaneous measurement of strain and temperature,” IEEE Photon. Technol. Lett. 11, 105–107 (1999).
[CrossRef]

Y. Liu, L. Zhang, and I. Bennion, “Fibre optic load sensors with high transverse strain sensitivity based on long-period gratings in B/Ge co-doped fibre,” Electron. Lett. 35, 661–663 (1999).
[CrossRef]

1997 (1)

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
[CrossRef]

1996 (1)

Bennion, I.

Y. Liu, L. Zhang, and I. Bennion, “Fibre optic load sensors with high transverse strain sensitivity based on long-period gratings in B/Ge co-doped fibre,” Electron. Lett. 35, 661–663 (1999).
[CrossRef]

Bhatia, V.

Chung, W.-H.

B.-O. Guan, H.-Y. Tam, S.-L. Ho, W.-H. Chung, and X.-Y. Dong, “Simultaneous strain and temperature measurement using a single fibre Bragg grating,” Electron. Lett. 36, 1018–1019 (2000).
[CrossRef]

Dong, X.-Y.

B.-O. Guan, H.-Y. Tam, S.-L. Ho, W.-H. Chung, and X.-Y. Dong, “Simultaneous strain and temperature measurement using a single fibre Bragg grating,” Electron. Lett. 36, 1018–1019 (2000).
[CrossRef]

B.-O. Guan, H.-Y. Tam, X.-M. Tao, and X.-Y. Dong, “Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating,” IEEE Photon. Technol. Lett. 12, 675–677 (2000).
[CrossRef]

Du, W.-C.

W.-C. Du, X.-M. Tao, and H.-Y. Tam, “Fiber Bragg grating cavity sensor for simultaneous measurement of strain and temperature,” IEEE Photon. Technol. Lett. 11, 105–107 (1999).
[CrossRef]

Erdogan, T.

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
[CrossRef]

Guan, B.-O.

B.-O. Guan, H.-Y. Tam, X.-M. Tao, and X.-Y. Dong, “Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating,” IEEE Photon. Technol. Lett. 12, 675–677 (2000).
[CrossRef]

B.-O. Guan, H.-Y. Tam, S.-L. Ho, W.-H. Chung, and X.-Y. Dong, “Simultaneous strain and temperature measurement using a single fibre Bragg grating,” Electron. Lett. 36, 1018–1019 (2000).
[CrossRef]

Ho, S.-L.

B.-O. Guan, H.-Y. Tam, S.-L. Ho, W.-H. Chung, and X.-Y. Dong, “Simultaneous strain and temperature measurement using a single fibre Bragg grating,” Electron. Lett. 36, 1018–1019 (2000).
[CrossRef]

Jang, J.-N.

J.-N. Jang, M.-S. Kim, T.-H. Rhee, and K.-H. Kwack, “Optical properties and reliability of recoated long-period fiber gratings for EDFA gain flattening,” in Proceedings of Lasers and Electro-Optics Society Annual Meeting (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1998), Vol. 1, pp. 259–260.

Kim, M.-S.

J.-N. Jang, M.-S. Kim, T.-H. Rhee, and K.-H. Kwack, “Optical properties and reliability of recoated long-period fiber gratings for EDFA gain flattening,” in Proceedings of Lasers and Electro-Optics Society Annual Meeting (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1998), Vol. 1, pp. 259–260.

Kwack, K.-H.

J.-N. Jang, M.-S. Kim, T.-H. Rhee, and K.-H. Kwack, “Optical properties and reliability of recoated long-period fiber gratings for EDFA gain flattening,” in Proceedings of Lasers and Electro-Optics Society Annual Meeting (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1998), Vol. 1, pp. 259–260.

Liu, Y.

Y. Liu, L. Zhang, and I. Bennion, “Fibre optic load sensors with high transverse strain sensitivity based on long-period gratings in B/Ge co-doped fibre,” Electron. Lett. 35, 661–663 (1999).
[CrossRef]

Rhee, T.-H.

J.-N. Jang, M.-S. Kim, T.-H. Rhee, and K.-H. Kwack, “Optical properties and reliability of recoated long-period fiber gratings for EDFA gain flattening,” in Proceedings of Lasers and Electro-Optics Society Annual Meeting (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1998), Vol. 1, pp. 259–260.

Tam, H.-Y.

B.-O. Guan, H.-Y. Tam, X.-M. Tao, and X.-Y. Dong, “Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating,” IEEE Photon. Technol. Lett. 12, 675–677 (2000).
[CrossRef]

B.-O. Guan, H.-Y. Tam, S.-L. Ho, W.-H. Chung, and X.-Y. Dong, “Simultaneous strain and temperature measurement using a single fibre Bragg grating,” Electron. Lett. 36, 1018–1019 (2000).
[CrossRef]

W.-C. Du, X.-M. Tao, and H.-Y. Tam, “Fiber Bragg grating cavity sensor for simultaneous measurement of strain and temperature,” IEEE Photon. Technol. Lett. 11, 105–107 (1999).
[CrossRef]

Tao, X.-M.

B.-O. Guan, H.-Y. Tam, X.-M. Tao, and X.-Y. Dong, “Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating,” IEEE Photon. Technol. Lett. 12, 675–677 (2000).
[CrossRef]

W.-C. Du, X.-M. Tao, and H.-Y. Tam, “Fiber Bragg grating cavity sensor for simultaneous measurement of strain and temperature,” IEEE Photon. Technol. Lett. 11, 105–107 (1999).
[CrossRef]

Vengsarkar, A. M.

Zhang, L.

Y. Liu, L. Zhang, and I. Bennion, “Fibre optic load sensors with high transverse strain sensitivity based on long-period gratings in B/Ge co-doped fibre,” Electron. Lett. 35, 661–663 (1999).
[CrossRef]

Electron. Lett. (2)

B.-O. Guan, H.-Y. Tam, S.-L. Ho, W.-H. Chung, and X.-Y. Dong, “Simultaneous strain and temperature measurement using a single fibre Bragg grating,” Electron. Lett. 36, 1018–1019 (2000).
[CrossRef]

Y. Liu, L. Zhang, and I. Bennion, “Fibre optic load sensors with high transverse strain sensitivity based on long-period gratings in B/Ge co-doped fibre,” Electron. Lett. 35, 661–663 (1999).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

B.-O. Guan, H.-Y. Tam, X.-M. Tao, and X.-Y. Dong, “Simultaneous strain and temperature measurement using a superstructure fiber Bragg grating,” IEEE Photon. Technol. Lett. 12, 675–677 (2000).
[CrossRef]

W.-C. Du, X.-M. Tao, and H.-Y. Tam, “Fiber Bragg grating cavity sensor for simultaneous measurement of strain and temperature,” IEEE Photon. Technol. Lett. 11, 105–107 (1999).
[CrossRef]

J. Lightwave Technol. (1)

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
[CrossRef]

Opt. Lett. (1)

Other (1)

J.-N. Jang, M.-S. Kim, T.-H. Rhee, and K.-H. Kwack, “Optical properties and reliability of recoated long-period fiber gratings for EDFA gain flattening,” in Proceedings of Lasers and Electro-Optics Society Annual Meeting (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1998), Vol. 1, pp. 259–260.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Transmission spectrum of a SFG.

Fig. 2
Fig. 2

Change of superstructure fiber grating spectrum under external perturbation. Bottom curve, original spectrum. Top curves, spectrum under temperature, strain, and load (dashed curve, spectrum under free load; solid curves, x- and y-polarizing mode spectra, respectively, under transverse load.

Fig. 3
Fig. 3

Experimental setup for determining the temperature, strain, and transverse load coefficients of a SFG. ELED, edge light-emitting diode; OSA, optical spectrum analyzer.

Fig. 4
Fig. 4

Response of superstructure fiber grating under external perturbation: a, Temperature response: I, narrow-band loss peak R=0.998; II, broadband loss peak R=0.993. b, Axial strain response: I, narrow-band loss peak R=0.997; II, broadband loss peak R=0.992. c, Transverse-load response: I, LP04x mode shift R=0.994; II, mode split λLP04xλLP04y R=0.993.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

λN=AT+Bϵ+λNo,
λB=CT+Dϵ+λBo,
λBx=λB+EL,
λBy=λB+FL,
Δλ1=AT+Bϵ,
Δλ2=CT+Dϵ+EL,
Δλ3=E-FL=FL.
(Δλ1Δλ2Δλ3)=[AB0CDE00F](TϵL)=K(TϵL).
K=[AB0CDE00F]=[0.01108.044×10-403.998×10-21.98×10-357.7180071.756],
K-1=[-192.2478.10-62.823872.04-1068.02859.07000.0139].

Metrics