Abstract

A cesium-based resonance fluorescence monochromator with a spectral resolution of 200  MHz and a tunable response over the D2 absorption line of cesium (380  MHz) is described. The narrow spectral response is achieved through excitation of a monokinetic population of the 6 P3/22   state by arrangement of the excitation lasers in either a copropagating or a counterpropagating orientation. The narrow spectral response of the detector allows for excitation of specific hyperfine components involved in the 6 P3/22   F=35 to 6 D5/22 F=26 transition (917.23  nm). The selectivity gained through resolving specific hyperfine transitions allows for a photon detector that is both spectrally tunable and narrow. We report the sub-Doppler linewidths achieved through various laser beam orientations. We also describe how these beam geometries can be applied to spectrally narrow and tunable image detection.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. I. Matveev, B. W. Smith, and J. D. Winefordner, Opt. Lett. 23, 304 (1998).
    [CrossRef]
  2. O. I. Matveev, B. W. Smith, and J. D. Winefordner, Appl. Opt. 36, 8833 (1997).
    [CrossRef]
  3. J. A. Gelbwachs, IEEE J. Quantum Electron. 24, 1266 (1988).
    [CrossRef]
  4. N. D. Finkelstein, W. R. Lempert, and R. B. Miles, Opt. Lett. 22, 537 (1997).
    [CrossRef] [PubMed]
  5. E. Korevaar, M. Rivers, and C. S. Liu, Proc. SPIE 1059, 111 (1989).
    [CrossRef]
  6. D. Pappas, N. C. Pixley, O. I. Matveev, B. W. Smith, and J. D. Winefordner, Opt. Commun. 191, 263 (2001).
    [CrossRef]
  7. E. Arimondo, M. Inguscio, and P. Violino, Rev. Mod. Phys. 49, 31 (1977).
    [CrossRef]
  8. S. Briandeau, D. Bloch, and M. Ducloy, Phys. Rev. A 59, 3723 (1999).
    [CrossRef]
  9. M. Tachikawa, K. Fukuda, S. Hayashi, and T. Kawamura, Jpn. J. Appl. Phys. 37, 1556 (1998).
    [CrossRef]

2001 (1)

D. Pappas, N. C. Pixley, O. I. Matveev, B. W. Smith, and J. D. Winefordner, Opt. Commun. 191, 263 (2001).
[CrossRef]

1999 (1)

S. Briandeau, D. Bloch, and M. Ducloy, Phys. Rev. A 59, 3723 (1999).
[CrossRef]

1998 (2)

M. Tachikawa, K. Fukuda, S. Hayashi, and T. Kawamura, Jpn. J. Appl. Phys. 37, 1556 (1998).
[CrossRef]

O. I. Matveev, B. W. Smith, and J. D. Winefordner, Opt. Lett. 23, 304 (1998).
[CrossRef]

1997 (2)

1989 (1)

E. Korevaar, M. Rivers, and C. S. Liu, Proc. SPIE 1059, 111 (1989).
[CrossRef]

1988 (1)

J. A. Gelbwachs, IEEE J. Quantum Electron. 24, 1266 (1988).
[CrossRef]

1977 (1)

E. Arimondo, M. Inguscio, and P. Violino, Rev. Mod. Phys. 49, 31 (1977).
[CrossRef]

Arimondo, E.

E. Arimondo, M. Inguscio, and P. Violino, Rev. Mod. Phys. 49, 31 (1977).
[CrossRef]

Bloch, D.

S. Briandeau, D. Bloch, and M. Ducloy, Phys. Rev. A 59, 3723 (1999).
[CrossRef]

Briandeau, S.

S. Briandeau, D. Bloch, and M. Ducloy, Phys. Rev. A 59, 3723 (1999).
[CrossRef]

Ducloy, M.

S. Briandeau, D. Bloch, and M. Ducloy, Phys. Rev. A 59, 3723 (1999).
[CrossRef]

Finkelstein, N. D.

Fukuda, K.

M. Tachikawa, K. Fukuda, S. Hayashi, and T. Kawamura, Jpn. J. Appl. Phys. 37, 1556 (1998).
[CrossRef]

Gelbwachs, J. A.

J. A. Gelbwachs, IEEE J. Quantum Electron. 24, 1266 (1988).
[CrossRef]

Hayashi, S.

M. Tachikawa, K. Fukuda, S. Hayashi, and T. Kawamura, Jpn. J. Appl. Phys. 37, 1556 (1998).
[CrossRef]

Inguscio, M.

E. Arimondo, M. Inguscio, and P. Violino, Rev. Mod. Phys. 49, 31 (1977).
[CrossRef]

Kawamura, T.

M. Tachikawa, K. Fukuda, S. Hayashi, and T. Kawamura, Jpn. J. Appl. Phys. 37, 1556 (1998).
[CrossRef]

Korevaar, E.

E. Korevaar, M. Rivers, and C. S. Liu, Proc. SPIE 1059, 111 (1989).
[CrossRef]

Lempert, W. R.

Liu, C. S.

E. Korevaar, M. Rivers, and C. S. Liu, Proc. SPIE 1059, 111 (1989).
[CrossRef]

Matveev, O. I.

Miles, R. B.

Pappas, D.

D. Pappas, N. C. Pixley, O. I. Matveev, B. W. Smith, and J. D. Winefordner, Opt. Commun. 191, 263 (2001).
[CrossRef]

Pixley, N. C.

D. Pappas, N. C. Pixley, O. I. Matveev, B. W. Smith, and J. D. Winefordner, Opt. Commun. 191, 263 (2001).
[CrossRef]

Rivers, M.

E. Korevaar, M. Rivers, and C. S. Liu, Proc. SPIE 1059, 111 (1989).
[CrossRef]

Smith, B. W.

Tachikawa, M.

M. Tachikawa, K. Fukuda, S. Hayashi, and T. Kawamura, Jpn. J. Appl. Phys. 37, 1556 (1998).
[CrossRef]

Violino, P.

E. Arimondo, M. Inguscio, and P. Violino, Rev. Mod. Phys. 49, 31 (1977).
[CrossRef]

Winefordner, J. D.

Appl. Opt. (1)

IEEE J. Quantum Electron. (1)

J. A. Gelbwachs, IEEE J. Quantum Electron. 24, 1266 (1988).
[CrossRef]

Jpn. J. Appl. Phys. (1)

M. Tachikawa, K. Fukuda, S. Hayashi, and T. Kawamura, Jpn. J. Appl. Phys. 37, 1556 (1998).
[CrossRef]

Opt. Commun. (1)

D. Pappas, N. C. Pixley, O. I. Matveev, B. W. Smith, and J. D. Winefordner, Opt. Commun. 191, 263 (2001).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. A (1)

S. Briandeau, D. Bloch, and M. Ducloy, Phys. Rev. A 59, 3723 (1999).
[CrossRef]

Proc. SPIE (1)

E. Korevaar, M. Rivers, and C. S. Liu, Proc. SPIE 1059, 111 (1989).
[CrossRef]

Rev. Mod. Phys. (1)

E. Arimondo, M. Inguscio, and P. Violino, Rev. Mod. Phys. 49, 31 (1977).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup to investigate the fluorescence profile in three beam geometries: FG, function generator; OIs, optical isolators; L, lens; M1–M3, mirrors; RM1, RM2, removable mirrors; BS, beam splitter; IF, 852- or 455-nm interference filter; PMT, photomultiplier tube; V/A, amplifier; OSC, oscilloscope. The λ1 beam enters the cell from the left (M1 and BS). In copropagating geometry, RM1 is removed and λ2 is directed into the cell by the beam splitter λ2path=RM2,M2,BS. In counterpropagating geometry, RM2 is removed and λ2 is directed into the cell by M3. In orthogonal geometry, RM2 is removed, and λ2 is directed into the cell by RM1.

Fig. 2
Fig. 2

Fluorescence intensity (455.53  nm) as a function of λ1 frequency in orthogonal-beam geometry.

Fig. 3
Fig. 3

Fluorescence intensity as a function of λ1 frequency in the copropagating-beam geometry. Each plot represents a fixed increment of λ2 frequency.

Fig. 4
Fig. 4

Several λ1 frequency sweeps in the counterpropagating-beam geometry. Each plot represents a fixed increment of λ2 frequency.

Metrics