Abstract

We demonstrate a novel multimodal nonlinear spectral microscopy based on a femtosecond Cr:forsterite laser at 1230  nm. By acquiring the whole nonlinear spectrum in the visible and near-NIR region, this novel technique allows a combination of different imaging modalities, including second-harmonic generation, third-harmonic generation, and multiple-photon fluorescence. Combined with the selected excitation wavelength, which is located in the IR transparency window, this microscopic technique can provide high penetration depth with reduced damage and is ideal for studying living cells.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
    [CrossRef] [PubMed]
  2. K. König, P. T. C. So, W. W. Mantulin, and E. Gratton, Opt. Lett. 22, 135 (1997).
    [CrossRef]
  3. P. C. Cheng, S. J. Pan, A. Shih, K.-S. Kim, W. S. Liou, and M. S. Park, J. Microsc. 189, 199 (1998).
    [CrossRef]
  4. R. R. Anderson and J. A. Parish, J. Invest. Dermatol. 77, 13 (1981).
    [CrossRef] [PubMed]
  5. B. E. Bouma, G. J. Tearney, I. P. Bilinsky, B. Golubovic, and J. G. Fujimoto, Opt. Lett. 21, 1839 (1996).
    [CrossRef] [PubMed]
  6. I.-H. Chen, S.-W. Chu, C.-K. Sun, P. C. Cheng, and B.-L. Lin, “Wavelength dependent damage in biological multiphoton confocal microscopy: a micro-spectroscopic comparison between femtosecond Ti:sapphire and Cr:forsterite laser sources,” Opt. Quantum Electron. (to be published).
  7. T.-M. Liu, S.-W. Chu, C.-K. Sun, B.-L. Lin, P. C. Cheng, and I. Johnson, Scanning 23, 249 (2001).
    [CrossRef] [PubMed]
  8. J. N. Gannaway and C. J. R. Sheppard, Opt. Quantum Electron. 10, 435 (1978).
    [CrossRef]
  9. L. Moreaux, O. Sandre, M. Blanchard-Desce, and J. Mertz, Opt. Lett. 25, 320 (2000).
    [CrossRef]
  10. G. Peleg, A. Lewis, M. Linial, and L. M. Loew, Proc. Natl. Acad. Sci. USA 96, 6700 (1999).
    [CrossRef]
  11. I. Freund, M. Deutsch, and A. Sprecher, Biophys. J. 50, 693 (1986).
    [CrossRef] [PubMed]
  12. D. Yelin and Y. Silberberg, Opt. Express 5, 169 (1999), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  13. M. Muller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, J. Microsc. 191, 266 (1998).
    [CrossRef]

2001 (1)

T.-M. Liu, S.-W. Chu, C.-K. Sun, B.-L. Lin, P. C. Cheng, and I. Johnson, Scanning 23, 249 (2001).
[CrossRef] [PubMed]

2000 (1)

1999 (2)

G. Peleg, A. Lewis, M. Linial, and L. M. Loew, Proc. Natl. Acad. Sci. USA 96, 6700 (1999).
[CrossRef]

D. Yelin and Y. Silberberg, Opt. Express 5, 169 (1999), http://www.opticsexpress.org .
[CrossRef] [PubMed]

1998 (2)

M. Muller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, J. Microsc. 191, 266 (1998).
[CrossRef]

P. C. Cheng, S. J. Pan, A. Shih, K.-S. Kim, W. S. Liou, and M. S. Park, J. Microsc. 189, 199 (1998).
[CrossRef]

1997 (1)

1996 (1)

1990 (1)

W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
[CrossRef] [PubMed]

1986 (1)

I. Freund, M. Deutsch, and A. Sprecher, Biophys. J. 50, 693 (1986).
[CrossRef] [PubMed]

1981 (1)

R. R. Anderson and J. A. Parish, J. Invest. Dermatol. 77, 13 (1981).
[CrossRef] [PubMed]

1978 (1)

J. N. Gannaway and C. J. R. Sheppard, Opt. Quantum Electron. 10, 435 (1978).
[CrossRef]

Anderson, R. R.

R. R. Anderson and J. A. Parish, J. Invest. Dermatol. 77, 13 (1981).
[CrossRef] [PubMed]

Bilinsky, I. P.

Blanchard-Desce, M.

Bouma, B. E.

Brakenhoff, G. J.

M. Muller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, J. Microsc. 191, 266 (1998).
[CrossRef]

Chen, I.-H.

I.-H. Chen, S.-W. Chu, C.-K. Sun, P. C. Cheng, and B.-L. Lin, “Wavelength dependent damage in biological multiphoton confocal microscopy: a micro-spectroscopic comparison between femtosecond Ti:sapphire and Cr:forsterite laser sources,” Opt. Quantum Electron. (to be published).

Cheng, P. C.

T.-M. Liu, S.-W. Chu, C.-K. Sun, B.-L. Lin, P. C. Cheng, and I. Johnson, Scanning 23, 249 (2001).
[CrossRef] [PubMed]

P. C. Cheng, S. J. Pan, A. Shih, K.-S. Kim, W. S. Liou, and M. S. Park, J. Microsc. 189, 199 (1998).
[CrossRef]

I.-H. Chen, S.-W. Chu, C.-K. Sun, P. C. Cheng, and B.-L. Lin, “Wavelength dependent damage in biological multiphoton confocal microscopy: a micro-spectroscopic comparison between femtosecond Ti:sapphire and Cr:forsterite laser sources,” Opt. Quantum Electron. (to be published).

Chu, S.-W.

T.-M. Liu, S.-W. Chu, C.-K. Sun, B.-L. Lin, P. C. Cheng, and I. Johnson, Scanning 23, 249 (2001).
[CrossRef] [PubMed]

I.-H. Chen, S.-W. Chu, C.-K. Sun, P. C. Cheng, and B.-L. Lin, “Wavelength dependent damage in biological multiphoton confocal microscopy: a micro-spectroscopic comparison between femtosecond Ti:sapphire and Cr:forsterite laser sources,” Opt. Quantum Electron. (to be published).

Denk, W.

W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
[CrossRef] [PubMed]

Deutsch, M.

I. Freund, M. Deutsch, and A. Sprecher, Biophys. J. 50, 693 (1986).
[CrossRef] [PubMed]

Freund, I.

I. Freund, M. Deutsch, and A. Sprecher, Biophys. J. 50, 693 (1986).
[CrossRef] [PubMed]

Fujimoto, J. G.

Gannaway, J. N.

J. N. Gannaway and C. J. R. Sheppard, Opt. Quantum Electron. 10, 435 (1978).
[CrossRef]

Golubovic, B.

Gratton, E.

Johnson, I.

T.-M. Liu, S.-W. Chu, C.-K. Sun, B.-L. Lin, P. C. Cheng, and I. Johnson, Scanning 23, 249 (2001).
[CrossRef] [PubMed]

Kim, K.-S.

P. C. Cheng, S. J. Pan, A. Shih, K.-S. Kim, W. S. Liou, and M. S. Park, J. Microsc. 189, 199 (1998).
[CrossRef]

König, K.

Lewis, A.

G. Peleg, A. Lewis, M. Linial, and L. M. Loew, Proc. Natl. Acad. Sci. USA 96, 6700 (1999).
[CrossRef]

Lin, B.-L.

T.-M. Liu, S.-W. Chu, C.-K. Sun, B.-L. Lin, P. C. Cheng, and I. Johnson, Scanning 23, 249 (2001).
[CrossRef] [PubMed]

I.-H. Chen, S.-W. Chu, C.-K. Sun, P. C. Cheng, and B.-L. Lin, “Wavelength dependent damage in biological multiphoton confocal microscopy: a micro-spectroscopic comparison between femtosecond Ti:sapphire and Cr:forsterite laser sources,” Opt. Quantum Electron. (to be published).

Linial, M.

G. Peleg, A. Lewis, M. Linial, and L. M. Loew, Proc. Natl. Acad. Sci. USA 96, 6700 (1999).
[CrossRef]

Liou, W. S.

P. C. Cheng, S. J. Pan, A. Shih, K.-S. Kim, W. S. Liou, and M. S. Park, J. Microsc. 189, 199 (1998).
[CrossRef]

Liu, T.-M.

T.-M. Liu, S.-W. Chu, C.-K. Sun, B.-L. Lin, P. C. Cheng, and I. Johnson, Scanning 23, 249 (2001).
[CrossRef] [PubMed]

Loew, L. M.

G. Peleg, A. Lewis, M. Linial, and L. M. Loew, Proc. Natl. Acad. Sci. USA 96, 6700 (1999).
[CrossRef]

Mantulin, W. W.

Mertz, J.

Moreaux, L.

Muller, M.

M. Muller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, J. Microsc. 191, 266 (1998).
[CrossRef]

Pan, S. J.

P. C. Cheng, S. J. Pan, A. Shih, K.-S. Kim, W. S. Liou, and M. S. Park, J. Microsc. 189, 199 (1998).
[CrossRef]

Parish, J. A.

R. R. Anderson and J. A. Parish, J. Invest. Dermatol. 77, 13 (1981).
[CrossRef] [PubMed]

Park, M. S.

P. C. Cheng, S. J. Pan, A. Shih, K.-S. Kim, W. S. Liou, and M. S. Park, J. Microsc. 189, 199 (1998).
[CrossRef]

Peleg, G.

G. Peleg, A. Lewis, M. Linial, and L. M. Loew, Proc. Natl. Acad. Sci. USA 96, 6700 (1999).
[CrossRef]

Sandre, O.

Sheppard, C. J. R.

J. N. Gannaway and C. J. R. Sheppard, Opt. Quantum Electron. 10, 435 (1978).
[CrossRef]

Shih, A.

P. C. Cheng, S. J. Pan, A. Shih, K.-S. Kim, W. S. Liou, and M. S. Park, J. Microsc. 189, 199 (1998).
[CrossRef]

Silberberg, Y.

So, P. T. C.

Sprecher, A.

I. Freund, M. Deutsch, and A. Sprecher, Biophys. J. 50, 693 (1986).
[CrossRef] [PubMed]

Squier, J.

M. Muller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, J. Microsc. 191, 266 (1998).
[CrossRef]

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
[CrossRef] [PubMed]

Sun, C.-K.

T.-M. Liu, S.-W. Chu, C.-K. Sun, B.-L. Lin, P. C. Cheng, and I. Johnson, Scanning 23, 249 (2001).
[CrossRef] [PubMed]

I.-H. Chen, S.-W. Chu, C.-K. Sun, P. C. Cheng, and B.-L. Lin, “Wavelength dependent damage in biological multiphoton confocal microscopy: a micro-spectroscopic comparison between femtosecond Ti:sapphire and Cr:forsterite laser sources,” Opt. Quantum Electron. (to be published).

Tearney, G. J.

Webb, W. W.

W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
[CrossRef] [PubMed]

Wilson, K. R.

M. Muller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, J. Microsc. 191, 266 (1998).
[CrossRef]

Yelin, D.

Biophys. J. (1)

I. Freund, M. Deutsch, and A. Sprecher, Biophys. J. 50, 693 (1986).
[CrossRef] [PubMed]

J. Invest. Dermatol. (1)

R. R. Anderson and J. A. Parish, J. Invest. Dermatol. 77, 13 (1981).
[CrossRef] [PubMed]

J. Microsc. (2)

P. C. Cheng, S. J. Pan, A. Shih, K.-S. Kim, W. S. Liou, and M. S. Park, J. Microsc. 189, 199 (1998).
[CrossRef]

M. Muller, J. Squier, K. R. Wilson, and G. J. Brakenhoff, J. Microsc. 191, 266 (1998).
[CrossRef]

Opt. Express (1)

Opt. Lett. (3)

Opt. Quantum Electron. (1)

J. N. Gannaway and C. J. R. Sheppard, Opt. Quantum Electron. 10, 435 (1978).
[CrossRef]

Proc. Natl. Acad. Sci. USA (1)

G. Peleg, A. Lewis, M. Linial, and L. M. Loew, Proc. Natl. Acad. Sci. USA 96, 6700 (1999).
[CrossRef]

Scanning (1)

T.-M. Liu, S.-W. Chu, C.-K. Sun, B.-L. Lin, P. C. Cheng, and I. Johnson, Scanning 23, 249 (2001).
[CrossRef] [PubMed]

Science (1)

W. Denk, J. H. Strickler, and W. W. Webb, Science 248, 73 (1990).
[CrossRef] [PubMed]

Other (1)

I.-H. Chen, S.-W. Chu, C.-K. Sun, P. C. Cheng, and B.-L. Lin, “Wavelength dependent damage in biological multiphoton confocal microscopy: a micro-spectroscopic comparison between femtosecond Ti:sapphire and Cr:forsterite laser sources,” Opt. Quantum Electron. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Nonlinear emission spectra from the cell wall of ground tissue in maize stem with three different sources: UV light (dotted curve), a Ti:sapphire laser (dashed curve), and a Cr:forsterite laser (solid curve). TPA, two-photon absorption.

Fig. 2
Fig. 2

Cross-sectional xyλ maize stem images corresponding to (A) THG, (B) SHG, and (C) 2PF. (D) Combined image taken at 60 μm from the sample surface. THG, SHG, and 2PF signals are denoted by blue, green, and red, respectively. (E) Combined xyλ image taken at 420 μm from the sample surface. (F), (G) xzλ images of ground tissue cells with regular and log scales, respectively. Scale bars, 15 μm.

Fig. 3
Fig. 3

(A) THG, (B) SHG, and (C) combined multimodal xyλ images taken from adaxial surface of rice leaf in region with silica cells (dotted curve). No 2PF was observed. (D) Multimodal xyλ images corresponding to different incident polarizations (shown as arrows). (E), (F), (G), and (H) show THG, SHG, 2PF, and combined multimodal xyλ images, respectively, of chloroplasts inside a live mesophyll cell of Commelina communis L. s, silica cell, g, grana; sg, starch granule. Scale bars, 15 μm.

Metrics