Abstract

A new microcavity design is proposed and structures are realized with a two-dimensional photonic-crystal slab. The cavity consists of seven defect holes that encompass a hexagon and is designed to reduce vertical light leakage. From a direct transmission measurement, a Q value of 816±30 is achieved at λ=1.55 μm. This high-Q cavity will permit the realistic realization of spontaneous-emission modification and on–off optical switches.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. M. Purcell, Phys. Rev. 69, 681 (1946).
    [CrossRef]
  2. S. Haroche and D. Kleppner, Phys. Today 42(X), 24 (1989).
    [CrossRef]
  3. H. Yokoyama, Science 256, 66 (1992).
    [CrossRef] [PubMed]
  4. E. Yablonovitch, J. Opt. Soc. Am. B 10, 283 (1993).
    [CrossRef]
  5. P. R. Villeneuve, D. S. Abrams, S. Fan, and J. D. Joannopoulos, Opt. Lett. 21, 2017 (1996).
    [CrossRef] [PubMed]
  6. E. Ozbay, G. Tuttle, M. Sigalas, C. M. Soukoulis, and K. M. Ho, Phys. Rev. B 51, 13,961 (1998).
    [CrossRef]
  7. S. Y. Lin, J. G. Fleming, M. M. Sigalas, R. Biswas, and K. M. Ho, Phys. Rev. B 59, 15,579 (1999).
    [CrossRef]
  8. D. R. Smith, R. Dalichaouch, N. Kroll, S. Schultz, S. L. McCall, and P. M. Platzman, J. Opt. Soc. Am. B 10, 314 (1993).
    [CrossRef]
  9. S. Y. Lin, V. M. Hietala, S. K. Lyo, and A. Zaslavsky, Appl. Phys. Lett. 68, 3233 (1996).
    [CrossRef]
  10. D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, V. Bardinal, and U. Oesterle, Electron. Lett. 33, 1978 (1997).
    [CrossRef]
  11. J.-K. Hwang, H.-Y. Ryu, D.-S. Song, I.-Y. Han, H.-W. Song, H.-K. Park, and Y.-H. Lee, Appl. Phys. Lett. 76, 2982 (2000).
    [CrossRef]
  12. O. J. Painter, A. Husain, A. Scherer, J. D. O’Brien, I. Kim, and P. D. Dapkus, J. Lightwave Technol. 17, 2082 (1999). An estimate of the upper-bound Q value of 600 has been reported as a result of photoluminescence measurements.
    [CrossRef]
  13. J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimberling, H. I. Smith, and E. P. Ippen, Nature 390, 143 (1997).
    [CrossRef]
  14. In such a measurement, the luminescence transition linewidth must be deconvoluted to allow for a quantitative analysis of cavity linewidth and therefore of cavity Q.
  15. S. Noda, A. Chutinan, and M. Imada, Nature 407, 608 (2000).
    [CrossRef] [PubMed]
  16. E. Chow, S. Y. Lin, S. G. Johnson, P. R. Villeneuve, J. D. Joannopoulos, J. R. Wendt, G. A. Vawter, W. Zubrzycki, H. Hou, and A. Alleman, Nature 407, 983 (2000).
    [CrossRef] [PubMed]
  17. S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, Phys. Rev. B 60, 5751 (1999).
    [CrossRef]
  18. P. R. Villeneuve, S. Fan, S. G. Johnson, and J. D. Joannopoulos, IEE Proc. Optoelectron. 145, 384 (1998).
    [CrossRef]
  19. For calculation of single-hole defects, the hole diameter is varied from d′=0.3 to 1.0 a. For the supercavity, the hole diameter varies from d′=0.3 to 0.5 a.
  20. S. Y. Lin and G. Arjavalingam, Opt. Lett. 18, 1666 (1993).
    [CrossRef] [PubMed]
  21. When other losses, such as dielectric loss and TE-or-TM mode conversion loss, become comparible to tunneling loss, this dependence is no longer valid.

2000 (3)

S. Noda, A. Chutinan, and M. Imada, Nature 407, 608 (2000).
[CrossRef] [PubMed]

E. Chow, S. Y. Lin, S. G. Johnson, P. R. Villeneuve, J. D. Joannopoulos, J. R. Wendt, G. A. Vawter, W. Zubrzycki, H. Hou, and A. Alleman, Nature 407, 983 (2000).
[CrossRef] [PubMed]

J.-K. Hwang, H.-Y. Ryu, D.-S. Song, I.-Y. Han, H.-W. Song, H.-K. Park, and Y.-H. Lee, Appl. Phys. Lett. 76, 2982 (2000).
[CrossRef]

1999 (3)

S. Y. Lin, J. G. Fleming, M. M. Sigalas, R. Biswas, and K. M. Ho, Phys. Rev. B 59, 15,579 (1999).
[CrossRef]

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, Phys. Rev. B 60, 5751 (1999).
[CrossRef]

O. J. Painter, A. Husain, A. Scherer, J. D. O’Brien, I. Kim, and P. D. Dapkus, J. Lightwave Technol. 17, 2082 (1999). An estimate of the upper-bound Q value of 600 has been reported as a result of photoluminescence measurements.
[CrossRef]

1998 (2)

P. R. Villeneuve, S. Fan, S. G. Johnson, and J. D. Joannopoulos, IEE Proc. Optoelectron. 145, 384 (1998).
[CrossRef]

E. Ozbay, G. Tuttle, M. Sigalas, C. M. Soukoulis, and K. M. Ho, Phys. Rev. B 51, 13,961 (1998).
[CrossRef]

1997 (2)

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimberling, H. I. Smith, and E. P. Ippen, Nature 390, 143 (1997).
[CrossRef]

D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, V. Bardinal, and U. Oesterle, Electron. Lett. 33, 1978 (1997).
[CrossRef]

1996 (2)

P. R. Villeneuve, D. S. Abrams, S. Fan, and J. D. Joannopoulos, Opt. Lett. 21, 2017 (1996).
[CrossRef] [PubMed]

S. Y. Lin, V. M. Hietala, S. K. Lyo, and A. Zaslavsky, Appl. Phys. Lett. 68, 3233 (1996).
[CrossRef]

1993 (3)

1992 (1)

H. Yokoyama, Science 256, 66 (1992).
[CrossRef] [PubMed]

1989 (1)

S. Haroche and D. Kleppner, Phys. Today 42(X), 24 (1989).
[CrossRef]

1946 (1)

E. M. Purcell, Phys. Rev. 69, 681 (1946).
[CrossRef]

Abrams, D. S.

Alleman, A.

E. Chow, S. Y. Lin, S. G. Johnson, P. R. Villeneuve, J. D. Joannopoulos, J. R. Wendt, G. A. Vawter, W. Zubrzycki, H. Hou, and A. Alleman, Nature 407, 983 (2000).
[CrossRef] [PubMed]

Arjavalingam, G.

Bardinal, V.

D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, V. Bardinal, and U. Oesterle, Electron. Lett. 33, 1978 (1997).
[CrossRef]

Benisty, H.

D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, V. Bardinal, and U. Oesterle, Electron. Lett. 33, 1978 (1997).
[CrossRef]

Biswas, R.

S. Y. Lin, J. G. Fleming, M. M. Sigalas, R. Biswas, and K. M. Ho, Phys. Rev. B 59, 15,579 (1999).
[CrossRef]

Chow, E.

E. Chow, S. Y. Lin, S. G. Johnson, P. R. Villeneuve, J. D. Joannopoulos, J. R. Wendt, G. A. Vawter, W. Zubrzycki, H. Hou, and A. Alleman, Nature 407, 983 (2000).
[CrossRef] [PubMed]

Chutinan, A.

S. Noda, A. Chutinan, and M. Imada, Nature 407, 608 (2000).
[CrossRef] [PubMed]

Dalichaouch, R.

Dapkus, P. D.

Fan, S.

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, Phys. Rev. B 60, 5751 (1999).
[CrossRef]

P. R. Villeneuve, S. Fan, S. G. Johnson, and J. D. Joannopoulos, IEE Proc. Optoelectron. 145, 384 (1998).
[CrossRef]

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimberling, H. I. Smith, and E. P. Ippen, Nature 390, 143 (1997).
[CrossRef]

P. R. Villeneuve, D. S. Abrams, S. Fan, and J. D. Joannopoulos, Opt. Lett. 21, 2017 (1996).
[CrossRef] [PubMed]

Ferrera, J.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimberling, H. I. Smith, and E. P. Ippen, Nature 390, 143 (1997).
[CrossRef]

Fleming, J. G.

S. Y. Lin, J. G. Fleming, M. M. Sigalas, R. Biswas, and K. M. Ho, Phys. Rev. B 59, 15,579 (1999).
[CrossRef]

Foresi, J. S.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimberling, H. I. Smith, and E. P. Ippen, Nature 390, 143 (1997).
[CrossRef]

Han, I.-Y.

J.-K. Hwang, H.-Y. Ryu, D.-S. Song, I.-Y. Han, H.-W. Song, H.-K. Park, and Y.-H. Lee, Appl. Phys. Lett. 76, 2982 (2000).
[CrossRef]

Haroche, S.

S. Haroche and D. Kleppner, Phys. Today 42(X), 24 (1989).
[CrossRef]

Hietala, V. M.

S. Y. Lin, V. M. Hietala, S. K. Lyo, and A. Zaslavsky, Appl. Phys. Lett. 68, 3233 (1996).
[CrossRef]

Ho, K. M.

S. Y. Lin, J. G. Fleming, M. M. Sigalas, R. Biswas, and K. M. Ho, Phys. Rev. B 59, 15,579 (1999).
[CrossRef]

E. Ozbay, G. Tuttle, M. Sigalas, C. M. Soukoulis, and K. M. Ho, Phys. Rev. B 51, 13,961 (1998).
[CrossRef]

Hou, H.

E. Chow, S. Y. Lin, S. G. Johnson, P. R. Villeneuve, J. D. Joannopoulos, J. R. Wendt, G. A. Vawter, W. Zubrzycki, H. Hou, and A. Alleman, Nature 407, 983 (2000).
[CrossRef] [PubMed]

Husain, A.

Hwang, J.-K.

J.-K. Hwang, H.-Y. Ryu, D.-S. Song, I.-Y. Han, H.-W. Song, H.-K. Park, and Y.-H. Lee, Appl. Phys. Lett. 76, 2982 (2000).
[CrossRef]

Imada, M.

S. Noda, A. Chutinan, and M. Imada, Nature 407, 608 (2000).
[CrossRef] [PubMed]

Ippen, E. P.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimberling, H. I. Smith, and E. P. Ippen, Nature 390, 143 (1997).
[CrossRef]

Joannopoulos, J. D.

E. Chow, S. Y. Lin, S. G. Johnson, P. R. Villeneuve, J. D. Joannopoulos, J. R. Wendt, G. A. Vawter, W. Zubrzycki, H. Hou, and A. Alleman, Nature 407, 983 (2000).
[CrossRef] [PubMed]

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, Phys. Rev. B 60, 5751 (1999).
[CrossRef]

P. R. Villeneuve, S. Fan, S. G. Johnson, and J. D. Joannopoulos, IEE Proc. Optoelectron. 145, 384 (1998).
[CrossRef]

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimberling, H. I. Smith, and E. P. Ippen, Nature 390, 143 (1997).
[CrossRef]

P. R. Villeneuve, D. S. Abrams, S. Fan, and J. D. Joannopoulos, Opt. Lett. 21, 2017 (1996).
[CrossRef] [PubMed]

Johnson, S. G.

E. Chow, S. Y. Lin, S. G. Johnson, P. R. Villeneuve, J. D. Joannopoulos, J. R. Wendt, G. A. Vawter, W. Zubrzycki, H. Hou, and A. Alleman, Nature 407, 983 (2000).
[CrossRef] [PubMed]

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, Phys. Rev. B 60, 5751 (1999).
[CrossRef]

P. R. Villeneuve, S. Fan, S. G. Johnson, and J. D. Joannopoulos, IEE Proc. Optoelectron. 145, 384 (1998).
[CrossRef]

Kim, I.

Kimberling, L. C.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimberling, H. I. Smith, and E. P. Ippen, Nature 390, 143 (1997).
[CrossRef]

Kleppner, D.

S. Haroche and D. Kleppner, Phys. Today 42(X), 24 (1989).
[CrossRef]

Kolodziejski, L. A.

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, Phys. Rev. B 60, 5751 (1999).
[CrossRef]

Krauss, T. F.

D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, V. Bardinal, and U. Oesterle, Electron. Lett. 33, 1978 (1997).
[CrossRef]

Kroll, N.

Labilloy, D.

D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, V. Bardinal, and U. Oesterle, Electron. Lett. 33, 1978 (1997).
[CrossRef]

Lee, Y.-H.

J.-K. Hwang, H.-Y. Ryu, D.-S. Song, I.-Y. Han, H.-W. Song, H.-K. Park, and Y.-H. Lee, Appl. Phys. Lett. 76, 2982 (2000).
[CrossRef]

Lin, S. Y.

E. Chow, S. Y. Lin, S. G. Johnson, P. R. Villeneuve, J. D. Joannopoulos, J. R. Wendt, G. A. Vawter, W. Zubrzycki, H. Hou, and A. Alleman, Nature 407, 983 (2000).
[CrossRef] [PubMed]

S. Y. Lin, J. G. Fleming, M. M. Sigalas, R. Biswas, and K. M. Ho, Phys. Rev. B 59, 15,579 (1999).
[CrossRef]

S. Y. Lin, V. M. Hietala, S. K. Lyo, and A. Zaslavsky, Appl. Phys. Lett. 68, 3233 (1996).
[CrossRef]

S. Y. Lin and G. Arjavalingam, Opt. Lett. 18, 1666 (1993).
[CrossRef] [PubMed]

Lyo, S. K.

S. Y. Lin, V. M. Hietala, S. K. Lyo, and A. Zaslavsky, Appl. Phys. Lett. 68, 3233 (1996).
[CrossRef]

McCall, S. L.

Noda, S.

S. Noda, A. Chutinan, and M. Imada, Nature 407, 608 (2000).
[CrossRef] [PubMed]

O’Brien, J. D.

Oesterle, U.

D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, V. Bardinal, and U. Oesterle, Electron. Lett. 33, 1978 (1997).
[CrossRef]

Ozbay, E.

E. Ozbay, G. Tuttle, M. Sigalas, C. M. Soukoulis, and K. M. Ho, Phys. Rev. B 51, 13,961 (1998).
[CrossRef]

Painter, O. J.

Park, H.-K.

J.-K. Hwang, H.-Y. Ryu, D.-S. Song, I.-Y. Han, H.-W. Song, H.-K. Park, and Y.-H. Lee, Appl. Phys. Lett. 76, 2982 (2000).
[CrossRef]

Platzman, P. M.

Purcell, E. M.

E. M. Purcell, Phys. Rev. 69, 681 (1946).
[CrossRef]

Ryu, H.-Y.

J.-K. Hwang, H.-Y. Ryu, D.-S. Song, I.-Y. Han, H.-W. Song, H.-K. Park, and Y.-H. Lee, Appl. Phys. Lett. 76, 2982 (2000).
[CrossRef]

Scherer, A.

Schultz, S.

Sigalas, M.

E. Ozbay, G. Tuttle, M. Sigalas, C. M. Soukoulis, and K. M. Ho, Phys. Rev. B 51, 13,961 (1998).
[CrossRef]

Sigalas, M. M.

S. Y. Lin, J. G. Fleming, M. M. Sigalas, R. Biswas, and K. M. Ho, Phys. Rev. B 59, 15,579 (1999).
[CrossRef]

Smith, D. R.

Smith, H. I.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimberling, H. I. Smith, and E. P. Ippen, Nature 390, 143 (1997).
[CrossRef]

Song, D.-S.

J.-K. Hwang, H.-Y. Ryu, D.-S. Song, I.-Y. Han, H.-W. Song, H.-K. Park, and Y.-H. Lee, Appl. Phys. Lett. 76, 2982 (2000).
[CrossRef]

Song, H.-W.

J.-K. Hwang, H.-Y. Ryu, D.-S. Song, I.-Y. Han, H.-W. Song, H.-K. Park, and Y.-H. Lee, Appl. Phys. Lett. 76, 2982 (2000).
[CrossRef]

Soukoulis, C. M.

E. Ozbay, G. Tuttle, M. Sigalas, C. M. Soukoulis, and K. M. Ho, Phys. Rev. B 51, 13,961 (1998).
[CrossRef]

Steinmeyer, G.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimberling, H. I. Smith, and E. P. Ippen, Nature 390, 143 (1997).
[CrossRef]

Thoen, E. R.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimberling, H. I. Smith, and E. P. Ippen, Nature 390, 143 (1997).
[CrossRef]

Tuttle, G.

E. Ozbay, G. Tuttle, M. Sigalas, C. M. Soukoulis, and K. M. Ho, Phys. Rev. B 51, 13,961 (1998).
[CrossRef]

Vawter, G. A.

E. Chow, S. Y. Lin, S. G. Johnson, P. R. Villeneuve, J. D. Joannopoulos, J. R. Wendt, G. A. Vawter, W. Zubrzycki, H. Hou, and A. Alleman, Nature 407, 983 (2000).
[CrossRef] [PubMed]

Villeneuve, P. R.

E. Chow, S. Y. Lin, S. G. Johnson, P. R. Villeneuve, J. D. Joannopoulos, J. R. Wendt, G. A. Vawter, W. Zubrzycki, H. Hou, and A. Alleman, Nature 407, 983 (2000).
[CrossRef] [PubMed]

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, Phys. Rev. B 60, 5751 (1999).
[CrossRef]

P. R. Villeneuve, S. Fan, S. G. Johnson, and J. D. Joannopoulos, IEE Proc. Optoelectron. 145, 384 (1998).
[CrossRef]

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimberling, H. I. Smith, and E. P. Ippen, Nature 390, 143 (1997).
[CrossRef]

P. R. Villeneuve, D. S. Abrams, S. Fan, and J. D. Joannopoulos, Opt. Lett. 21, 2017 (1996).
[CrossRef] [PubMed]

Weisbuch, C.

D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, V. Bardinal, and U. Oesterle, Electron. Lett. 33, 1978 (1997).
[CrossRef]

Wendt, J. R.

E. Chow, S. Y. Lin, S. G. Johnson, P. R. Villeneuve, J. D. Joannopoulos, J. R. Wendt, G. A. Vawter, W. Zubrzycki, H. Hou, and A. Alleman, Nature 407, 983 (2000).
[CrossRef] [PubMed]

Yablonovitch, E.

Yokoyama, H.

H. Yokoyama, Science 256, 66 (1992).
[CrossRef] [PubMed]

Zaslavsky, A.

S. Y. Lin, V. M. Hietala, S. K. Lyo, and A. Zaslavsky, Appl. Phys. Lett. 68, 3233 (1996).
[CrossRef]

Zubrzycki, W.

E. Chow, S. Y. Lin, S. G. Johnson, P. R. Villeneuve, J. D. Joannopoulos, J. R. Wendt, G. A. Vawter, W. Zubrzycki, H. Hou, and A. Alleman, Nature 407, 983 (2000).
[CrossRef] [PubMed]

Appl. Phys. Lett. (2)

S. Y. Lin, V. M. Hietala, S. K. Lyo, and A. Zaslavsky, Appl. Phys. Lett. 68, 3233 (1996).
[CrossRef]

J.-K. Hwang, H.-Y. Ryu, D.-S. Song, I.-Y. Han, H.-W. Song, H.-K. Park, and Y.-H. Lee, Appl. Phys. Lett. 76, 2982 (2000).
[CrossRef]

Electron. Lett. (1)

D. Labilloy, H. Benisty, C. Weisbuch, T. F. Krauss, V. Bardinal, and U. Oesterle, Electron. Lett. 33, 1978 (1997).
[CrossRef]

IEE Proc. Optoelectron. (1)

P. R. Villeneuve, S. Fan, S. G. Johnson, and J. D. Joannopoulos, IEE Proc. Optoelectron. 145, 384 (1998).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (2)

Nature (3)

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimberling, H. I. Smith, and E. P. Ippen, Nature 390, 143 (1997).
[CrossRef]

S. Noda, A. Chutinan, and M. Imada, Nature 407, 608 (2000).
[CrossRef] [PubMed]

E. Chow, S. Y. Lin, S. G. Johnson, P. R. Villeneuve, J. D. Joannopoulos, J. R. Wendt, G. A. Vawter, W. Zubrzycki, H. Hou, and A. Alleman, Nature 407, 983 (2000).
[CrossRef] [PubMed]

Opt. Lett. (2)

Phys. Rev. (1)

E. M. Purcell, Phys. Rev. 69, 681 (1946).
[CrossRef]

Phys. Rev. B (3)

S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, Phys. Rev. B 60, 5751 (1999).
[CrossRef]

E. Ozbay, G. Tuttle, M. Sigalas, C. M. Soukoulis, and K. M. Ho, Phys. Rev. B 51, 13,961 (1998).
[CrossRef]

S. Y. Lin, J. G. Fleming, M. M. Sigalas, R. Biswas, and K. M. Ho, Phys. Rev. B 59, 15,579 (1999).
[CrossRef]

Phys. Today (1)

S. Haroche and D. Kleppner, Phys. Today 42(X), 24 (1989).
[CrossRef]

Science (1)

H. Yokoyama, Science 256, 66 (1992).
[CrossRef] [PubMed]

Other (3)

In such a measurement, the luminescence transition linewidth must be deconvoluted to allow for a quantitative analysis of cavity linewidth and therefore of cavity Q.

When other losses, such as dielectric loss and TE-or-TM mode conversion loss, become comparible to tunneling loss, this dependence is no longer valid.

For calculation of single-hole defects, the hole diameter is varied from d′=0.3 to 1.0 a. For the supercavity, the hole diameter varies from d′=0.3 to 0.5 a.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Scanning-electron microscope top-view image of a microcavity sample. The microcavity consists of seven smaller holes, with hole diameters d=0.4a=176 nm, that encompass a hexagon. The input and output waveguides are used to facilitate coupling of laser light. The four periods N=4 of a photonic crystal act as a photonic tunnel barrier for confinement of light.

Fig. 2
Fig. 2

Transmission spectrum for an N=2 microcavity sample. (a) The spectrum, shifted vertically by 0.1 for clarity, shows a transmission peak at λ1547 nm, or, equivalently ωa/λ=0.2846. It also contains multiple-wavelength oscillations, with a periodicity of Δλ0.55 nm. (b) Smoothed data (filled circles) fitted to a Lorentzian (red curve); the deduced FWHM is 4.4  nm. ar.  un., arbitrary units.

Fig. 3
Fig. 3

Transmission spectrum for an N=4 microcavity sample. (a) The spectrum, shifted vertically by 0.08, shows a well-defined transmission peak and also short-period oscillations Δλ0.55 nm. (b) The fitted curve (red curve) has a FWHM of 1.9  nm, and the corresponding cavity Q value is 816±30. Inset, the infrared image of transmitted light has a well-defined Gaussian-like profile.

Fig. 4
Fig. 4

Summary of resonant frequency (filled squares) and cavity Q factors (filled circles) as a function of N. The observed resonant frequency ω is at the TE midgap and varies less than 1% for all samples. The cavity Q factors are fitted to an exponential function (dashed line), and the deduced slope is κ=0.9 μm-1.

Metrics