Abstract

We have demonstrated stimulated Rayleigh–Brillouin scattering at a wavelength of 1.064 μm, using an injection-seeded Nd:YAG laser as a pump laser and a tunable diode laser as a probe laser. Spectra with a good signal-to-noise ratio are obtained despite the low probe-beam power and small gain coefficient in the infrared. Stimulated Rayleigh scattering is readily observable in organic and many other liquids because of absorption by the OH and CH overtone or combination bands. The absorption also causes an asymmetry in the stimulated Brillouin peak. A Rayleigh linewidth of 8  MHz is measured with this approach.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Y. Tang, C. Y. She, and S. A. Lee, Opt. Lett. 12, 870–872 (1987).
    [CrossRef] [PubMed]
  2. G. W. Faris, L. E. Jusinski, M. J. Dyer, W. K. Bischel, and A. P. Hickman, Opt. Lett. 15, 703–705 (1990).
    [CrossRef] [PubMed]
  3. K. Ratanaphruks, W. T. Grubbs, and R. A. MacPhail, Chem. Phys. Lett. 182, 371–378 (1991).
  4. G. W. Faris, L. E. Jusinski, and A. P. Hickman, J. Opt. Soc. Am. B 10, 587–599 (1993).
    [CrossRef]
  5. W. Kaiser and M. Maier, in Laser Handbook, F. T. Arecchi and E. O. Schulz-Dubois, eds. (North-Holland, Amsterdam, 1972), Vol. 2, pp. 1077–1150.
  6. G. W. Faris, M. J. Dyer, and W. K. Bischel, Opt. Lett. 19, 1529–1531 (1994).
    [CrossRef] [PubMed]
  7. J. Humlicek, J. Quant. Spectrosc. Radiat. Transfer 27, 437–444 (1982).
    [CrossRef]
  8. F. Schreier, J. Quant. Spectrosc. Radiat. Transfer 48, 743–762 (1992).
    [CrossRef]
  9. H. El-Kashef, J. Mod. Opt. 46, 1389–1399 (1999).
    [CrossRef]
  10. D. R. Lide, ed., CRC Handbook of Chemistry and Physics, 81st ed. (CRC, Boca Raton, Fla., 2000), pp. 6–137, 6–188, and 15–16.
  11. H. Z. Cummins and R. W. Gammon, J. Chem. Phys. 44, 2785–2796 (1966).

1999

H. El-Kashef, J. Mod. Opt. 46, 1389–1399 (1999).
[CrossRef]

1994

1993

1992

F. Schreier, J. Quant. Spectrosc. Radiat. Transfer 48, 743–762 (1992).
[CrossRef]

1991

K. Ratanaphruks, W. T. Grubbs, and R. A. MacPhail, Chem. Phys. Lett. 182, 371–378 (1991).

1990

1987

1982

J. Humlicek, J. Quant. Spectrosc. Radiat. Transfer 27, 437–444 (1982).
[CrossRef]

1966

H. Z. Cummins and R. W. Gammon, J. Chem. Phys. 44, 2785–2796 (1966).

Bischel, W. K.

Cummins, H. Z.

H. Z. Cummins and R. W. Gammon, J. Chem. Phys. 44, 2785–2796 (1966).

Dyer, M. J.

El-Kashef, H.

H. El-Kashef, J. Mod. Opt. 46, 1389–1399 (1999).
[CrossRef]

Faris, G. W.

Gammon, R. W.

H. Z. Cummins and R. W. Gammon, J. Chem. Phys. 44, 2785–2796 (1966).

Grubbs, W. T.

K. Ratanaphruks, W. T. Grubbs, and R. A. MacPhail, Chem. Phys. Lett. 182, 371–378 (1991).

Hickman, A. P.

Humlicek, J.

J. Humlicek, J. Quant. Spectrosc. Radiat. Transfer 27, 437–444 (1982).
[CrossRef]

Jusinski, L. E.

Kaiser, W.

W. Kaiser and M. Maier, in Laser Handbook, F. T. Arecchi and E. O. Schulz-Dubois, eds. (North-Holland, Amsterdam, 1972), Vol. 2, pp. 1077–1150.

Lee, S. A.

MacPhail, R. A.

K. Ratanaphruks, W. T. Grubbs, and R. A. MacPhail, Chem. Phys. Lett. 182, 371–378 (1991).

Maier, M.

W. Kaiser and M. Maier, in Laser Handbook, F. T. Arecchi and E. O. Schulz-Dubois, eds. (North-Holland, Amsterdam, 1972), Vol. 2, pp. 1077–1150.

Ratanaphruks, K.

K. Ratanaphruks, W. T. Grubbs, and R. A. MacPhail, Chem. Phys. Lett. 182, 371–378 (1991).

Schreier, F.

F. Schreier, J. Quant. Spectrosc. Radiat. Transfer 48, 743–762 (1992).
[CrossRef]

She, C. Y.

Tang, S. Y.

Chem. Phys. Lett.

K. Ratanaphruks, W. T. Grubbs, and R. A. MacPhail, Chem. Phys. Lett. 182, 371–378 (1991).

J. Chem. Phys.

H. Z. Cummins and R. W. Gammon, J. Chem. Phys. 44, 2785–2796 (1966).

J. Mod. Opt.

H. El-Kashef, J. Mod. Opt. 46, 1389–1399 (1999).
[CrossRef]

J. Opt. Soc. Am. B

J. Quant. Spectrosc. Radiat. Transfer

J. Humlicek, J. Quant. Spectrosc. Radiat. Transfer 27, 437–444 (1982).
[CrossRef]

F. Schreier, J. Quant. Spectrosc. Radiat. Transfer 48, 743–762 (1992).
[CrossRef]

Opt. Lett.

Other

W. Kaiser and M. Maier, in Laser Handbook, F. T. Arecchi and E. O. Schulz-Dubois, eds. (North-Holland, Amsterdam, 1972), Vol. 2, pp. 1077–1150.

D. R. Lide, ed., CRC Handbook of Chemistry and Physics, 81st ed. (CRC, Boca Raton, Fla., 2000), pp. 6–137, 6–188, and 15–16.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental apparatus for stimulated Brillouin and stimulated Rayleigh scattering at 1.064 μm.

Fig. 2
Fig. 2

Stimulated Rayleigh–Brillouin spectrum for n-hexane at 1.064 μm (top curve), fits to the data (middle curves), and electrostrictive and thermal components of the fit (bottom curve). The dashed lines indicate the zero gain level for each curve.

Fig. 3
Fig. 3

Data (points) and fit (solid curve) for stimulated Brillouin gain peak for n-hexane at 1.064 μm. Stimulated thermal Brillouin scattering gives an asymmetry to the peak.

Fig. 4
Fig. 4

Data (points) and fit (solid curve) for stimulated thermal Rayleigh scattering in n-hexane at 1.064 μm.

Fig. 5
Fig. 5

Stimulated Brillouin spectrum for methanol measured at 532  nm.

Tables (1)

Tables Icon

Table 1 Properties Measured in Hexane by Stimulated Rayleigh–Brillouin Scattering at 1.064  μm

Metrics