Abstract

We demonstrate 0.8dB/cm transmission loss for a single-mode, strip Si/SiO2 waveguide with submicrometer cross-sectional dimensions. We compare the conventional waveguide-fabrication method with two smoothing technologies that we have developed, oxidation smoothing and anisotropic etching. We observe significant reduction of sidewall roughness with our smoothing technologies, which directly results in reduced scattering losses. The rapid increase in the scattering losses as the waveguide dimension is miniaturized, as seen in conventionally fabricated waveguides, is effectively suppressed in the waveguides made with our smoothing technologies. In the oxidation smoothing case, the loss is reduced from 32 dB/cm for the conventional fabrication method to 0.8 dB/cm for the single-mode waveguide width of 0.5 μm. This is to our knowledge the smallest reported loss for a high-index-difference system such as a Si/SiO2 strip waveguide.

© 2001 Optical Society of America

Full Article  |  PDF Article
Related Articles
Simultaneous fabrication of optical channel waveguides and out-of-plane branching mirrors from a polymeric slab structure

Manabu Kagami, Kazuo Hasegawa, and Hiroshi Ito
Appl. Opt. 36(30) 7700-7707 (1997)

Losses in single-mode silicon-on-insulator strip waveguides and bends

Yurii A. Vlasov and Sharee J. McNab
Opt. Express 12(8) 1622-1631 (2004)

Si-CMOS-compatible lift-off fabrication of low-loss planar chalcogenide waveguides

Juejun Hu, Vladimir Tarasov, Nathan Carlie, Ning-Ning Feng, Laeticia Petit, Anu Agarwal, Kathleen Richardson, and Lionel Kimerling
Opt. Express 15(19) 11798-11807 (2007)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (1)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription