Abstract

We describe an interference microscope that produces topographic images with a minimum acquisition time of 20  ms. The system is based on phase-shifting interferometry with sinusoidal phase modulation induced by the oscillation of an interferometric objective (Michelson or Mirau). A CCD camera captures four images per oscillation period to produce a phase map in real time. The system is installed on a commercial microscope.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Bhushan, J. C. Wyant, and C. L. Koliopoulos, Appl. Opt. 24, 1489 (1985).
    [CrossRef]
  2. M. Davidson, K. Kaufman, I. Mazor, and F. Cohen, Pro. SPIE 775, 233 (1987).
    [CrossRef]
  3. S. S. C. Chim and G. S. Kino, Appl. Opt. 30, 2197 (1991).
    [CrossRef] [PubMed]
  4. K. Creath, in Progress in Optics, E. Wolf, ed. (Elsevier, New York, 1988), Vol. 26, pp. 349–393.
    [CrossRef]
  5. D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping, Theory, Algorithms, and Software (Wiley-Interscience, New York, 1998).
  6. K. D. Stumpf, Opt. Eng. 18, 648 (1979).
    [CrossRef]
  7. J. C. Wyant, Appl. Opt. 14, 2622 (1975).
    [CrossRef] [PubMed]
  8. O. Sasaki, H. Okazaki, and M. Sakai, Appl. Opt. 26, 1089 (1987).
    [CrossRef] [PubMed]
  9. A. Dubois, J. Opt. Soc. Am. 18, 1972 (2001).
    [CrossRef]
  10. F. R. Tolmon and J. G. Wood, J. Sci. Instrum. 33, 236 (1956).
    [CrossRef]
  11. K. Creath, Appl. Opt. 28, 333 (1989).
  12. G. Schulz and K.-E. Elssner, Appl. Opt. 30, 4500 (1991).
    [CrossRef] [PubMed]
  13. C. J. R. Sheppard and K. G. Larkin, Appl. Opt. 34, 4731 (1995).
    [CrossRef] [PubMed]
  14. A. Dubois, J. Selb, L. Vabre, and A. C. Boccara, Appl. Opt. 39, 2323 (2000).
    [CrossRef]
  15. K. Creath and J. C. Wyant, Appl. Opt. 29, 3823 (1990).
    [CrossRef] [PubMed]

2001 (1)

A. Dubois, J. Opt. Soc. Am. 18, 1972 (2001).
[CrossRef]

2000 (1)

A. Dubois, J. Selb, L. Vabre, and A. C. Boccara, Appl. Opt. 39, 2323 (2000).
[CrossRef]

1995 (1)

1991 (2)

1990 (1)

1989 (1)

K. Creath, Appl. Opt. 28, 333 (1989).

1987 (2)

O. Sasaki, H. Okazaki, and M. Sakai, Appl. Opt. 26, 1089 (1987).
[CrossRef] [PubMed]

M. Davidson, K. Kaufman, I. Mazor, and F. Cohen, Pro. SPIE 775, 233 (1987).
[CrossRef]

1985 (1)

1979 (1)

K. D. Stumpf, Opt. Eng. 18, 648 (1979).
[CrossRef]

1975 (1)

1956 (1)

F. R. Tolmon and J. G. Wood, J. Sci. Instrum. 33, 236 (1956).
[CrossRef]

Bhushan, B.

Boccara, A. C.

A. Dubois, J. Selb, L. Vabre, and A. C. Boccara, Appl. Opt. 39, 2323 (2000).
[CrossRef]

Chim, S. S. C.

Cohen, F.

M. Davidson, K. Kaufman, I. Mazor, and F. Cohen, Pro. SPIE 775, 233 (1987).
[CrossRef]

Creath, K.

K. Creath and J. C. Wyant, Appl. Opt. 29, 3823 (1990).
[CrossRef] [PubMed]

K. Creath, Appl. Opt. 28, 333 (1989).

K. Creath, in Progress in Optics, E. Wolf, ed. (Elsevier, New York, 1988), Vol. 26, pp. 349–393.
[CrossRef]

Davidson, M.

M. Davidson, K. Kaufman, I. Mazor, and F. Cohen, Pro. SPIE 775, 233 (1987).
[CrossRef]

Dubois, A.

A. Dubois, J. Opt. Soc. Am. 18, 1972 (2001).
[CrossRef]

A. Dubois, J. Selb, L. Vabre, and A. C. Boccara, Appl. Opt. 39, 2323 (2000).
[CrossRef]

Elssner, K.-E.

Ghiglia, D. C.

D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping, Theory, Algorithms, and Software (Wiley-Interscience, New York, 1998).

Kaufman, K.

M. Davidson, K. Kaufman, I. Mazor, and F. Cohen, Pro. SPIE 775, 233 (1987).
[CrossRef]

Kino, G. S.

Koliopoulos, C. L.

Larkin, K. G.

Mazor, I.

M. Davidson, K. Kaufman, I. Mazor, and F. Cohen, Pro. SPIE 775, 233 (1987).
[CrossRef]

Okazaki, H.

Pritt, M. D.

D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping, Theory, Algorithms, and Software (Wiley-Interscience, New York, 1998).

Sakai, M.

Sasaki, O.

Schulz, G.

Selb, J.

A. Dubois, J. Selb, L. Vabre, and A. C. Boccara, Appl. Opt. 39, 2323 (2000).
[CrossRef]

Sheppard, C. J. R.

Stumpf, K. D.

K. D. Stumpf, Opt. Eng. 18, 648 (1979).
[CrossRef]

Tolmon, F. R.

F. R. Tolmon and J. G. Wood, J. Sci. Instrum. 33, 236 (1956).
[CrossRef]

Vabre, L.

A. Dubois, J. Selb, L. Vabre, and A. C. Boccara, Appl. Opt. 39, 2323 (2000).
[CrossRef]

Wood, J. G.

F. R. Tolmon and J. G. Wood, J. Sci. Instrum. 33, 236 (1956).
[CrossRef]

Wyant, J. C.

Appl. Opt. (9)

J. Opt. Soc. Am. (1)

A. Dubois, J. Opt. Soc. Am. 18, 1972 (2001).
[CrossRef]

J. Sci. Instrum. (1)

F. R. Tolmon and J. G. Wood, J. Sci. Instrum. 33, 236 (1956).
[CrossRef]

Opt. Eng. (1)

K. D. Stumpf, Opt. Eng. 18, 648 (1979).
[CrossRef]

Pro. SPIE (1)

M. Davidson, K. Kaufman, I. Mazor, and F. Cohen, Pro. SPIE 775, 233 (1987).
[CrossRef]

Other (2)

K. Creath, in Progress in Optics, E. Wolf, ed. (Elsevier, New York, 1988), Vol. 26, pp. 349–393.
[CrossRef]

D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping, Theory, Algorithms, and Software (Wiley-Interscience, New York, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup. The illumination source is a filtered tungsten halogen lamp. The PZT makes the interferometric objective oscillate. The CCD camera records four images per oscillation period. Phase maps are calculated and displayed in real time.

Fig. 2
Fig. 2

Topographic image of a mask for the manufacture of integrated circuits with a 10×, 0.3-NA Mirau objective (Nikon). Field of view, 500 μm×500 μm. Average height of the structures, 70  nm.

Fig. 3
Fig. 3

Phase maps from the surface of a spreading oil drop. Time between successive images, 100  ms; acquisition time for each image, 20  ms; field of view, 500 μm×500 μm.

Fig. 4
Fig. 4

Topographic image of a polished silicon wafer (10×, 0.3-NA Mirau objective; Nikon). Field of view, 500 μm×500 μm.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

It=I¯+Acosϕ+ψsin2πft+θ,
Ep=p-1T/4pT/4Itdt,p=1,2,3,4.
tanϕ=E1-E2-E3+E4E1-E2+E3-E4.
ϕ=4πh/λβ,
Δzλ=0.08γkN,

Metrics