Abstract

We describe an interference microscope that produces topographic images with a minimum acquisition time of 20  ms. The system is based on phase-shifting interferometry with sinusoidal phase modulation induced by the oscillation of an interferometric objective (Michelson or Mirau). A CCD camera captures four images per oscillation period to produce a phase map in real time. The system is installed on a commercial microscope.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Bhushan, J. C. Wyant, and C. L. Koliopoulos, Appl. Opt. 24, 1489 (1985).
    [CrossRef]
  2. M. Davidson, K. Kaufman, I. Mazor, and F. Cohen, Pro. SPIE 775, 233 (1987).
    [CrossRef]
  3. S. S. C. Chim and G. S. Kino, Appl. Opt. 30, 2197 (1991).
    [CrossRef] [PubMed]
  4. K. Creath, in Progress in Optics, E. Wolf, ed. (Elsevier, New York, 1988), Vol. 26, pp. 349–393.
    [CrossRef]
  5. D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping, Theory, Algorithms, and Software (Wiley-Interscience, New York, 1998).
  6. K. D. Stumpf, Opt. Eng. 18, 648 (1979).
    [CrossRef]
  7. J. C. Wyant, Appl. Opt. 14, 2622 (1975).
    [CrossRef] [PubMed]
  8. O. Sasaki, H. Okazaki, and M. Sakai, Appl. Opt. 26, 1089 (1987).
    [CrossRef] [PubMed]
  9. A. Dubois, J. Opt. Soc. Am. 18, 1972 (2001).
    [CrossRef]
  10. F. R. Tolmon and J. G. Wood, J. Sci. Instrum. 33, 236 (1956).
    [CrossRef]
  11. K. Creath, Appl. Opt. 28, 333 (1989).
  12. G. Schulz and K.-E. Elssner, Appl. Opt. 30, 4500 (1991).
    [CrossRef] [PubMed]
  13. C. J. R. Sheppard and K. G. Larkin, Appl. Opt. 34, 4731 (1995).
    [CrossRef] [PubMed]
  14. A. Dubois, J. Selb, L. Vabre, and A. C. Boccara, Appl. Opt. 39, 2323 (2000).
    [CrossRef]
  15. K. Creath and J. C. Wyant, Appl. Opt. 29, 3823 (1990).
    [CrossRef] [PubMed]

2001 (1)

A. Dubois, J. Opt. Soc. Am. 18, 1972 (2001).
[CrossRef]

2000 (1)

A. Dubois, J. Selb, L. Vabre, and A. C. Boccara, Appl. Opt. 39, 2323 (2000).
[CrossRef]

1995 (1)

1991 (2)

1990 (1)

1989 (1)

K. Creath, Appl. Opt. 28, 333 (1989).

1987 (2)

M. Davidson, K. Kaufman, I. Mazor, and F. Cohen, Pro. SPIE 775, 233 (1987).
[CrossRef]

O. Sasaki, H. Okazaki, and M. Sakai, Appl. Opt. 26, 1089 (1987).
[CrossRef] [PubMed]

1985 (1)

1979 (1)

K. D. Stumpf, Opt. Eng. 18, 648 (1979).
[CrossRef]

1975 (1)

1956 (1)

F. R. Tolmon and J. G. Wood, J. Sci. Instrum. 33, 236 (1956).
[CrossRef]

Bhushan, B.

Boccara, A. C.

A. Dubois, J. Selb, L. Vabre, and A. C. Boccara, Appl. Opt. 39, 2323 (2000).
[CrossRef]

Chim, S. S. C.

Cohen, F.

M. Davidson, K. Kaufman, I. Mazor, and F. Cohen, Pro. SPIE 775, 233 (1987).
[CrossRef]

Creath, K.

K. Creath and J. C. Wyant, Appl. Opt. 29, 3823 (1990).
[CrossRef] [PubMed]

K. Creath, Appl. Opt. 28, 333 (1989).

K. Creath, in Progress in Optics, E. Wolf, ed. (Elsevier, New York, 1988), Vol. 26, pp. 349–393.
[CrossRef]

Davidson, M.

M. Davidson, K. Kaufman, I. Mazor, and F. Cohen, Pro. SPIE 775, 233 (1987).
[CrossRef]

Dubois, A.

A. Dubois, J. Opt. Soc. Am. 18, 1972 (2001).
[CrossRef]

A. Dubois, J. Selb, L. Vabre, and A. C. Boccara, Appl. Opt. 39, 2323 (2000).
[CrossRef]

Elssner, K.-E.

Ghiglia, D. C.

D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping, Theory, Algorithms, and Software (Wiley-Interscience, New York, 1998).

Kaufman, K.

M. Davidson, K. Kaufman, I. Mazor, and F. Cohen, Pro. SPIE 775, 233 (1987).
[CrossRef]

Kino, G. S.

Koliopoulos, C. L.

Larkin, K. G.

Mazor, I.

M. Davidson, K. Kaufman, I. Mazor, and F. Cohen, Pro. SPIE 775, 233 (1987).
[CrossRef]

Okazaki, H.

Pritt, M. D.

D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping, Theory, Algorithms, and Software (Wiley-Interscience, New York, 1998).

Sakai, M.

Sasaki, O.

Schulz, G.

Selb, J.

A. Dubois, J. Selb, L. Vabre, and A. C. Boccara, Appl. Opt. 39, 2323 (2000).
[CrossRef]

Sheppard, C. J. R.

Stumpf, K. D.

K. D. Stumpf, Opt. Eng. 18, 648 (1979).
[CrossRef]

Tolmon, F. R.

F. R. Tolmon and J. G. Wood, J. Sci. Instrum. 33, 236 (1956).
[CrossRef]

Vabre, L.

A. Dubois, J. Selb, L. Vabre, and A. C. Boccara, Appl. Opt. 39, 2323 (2000).
[CrossRef]

Wood, J. G.

F. R. Tolmon and J. G. Wood, J. Sci. Instrum. 33, 236 (1956).
[CrossRef]

Wyant, J. C.

Appl. Opt. (9)

J. Opt. Soc. Am. (1)

A. Dubois, J. Opt. Soc. Am. 18, 1972 (2001).
[CrossRef]

J. Sci. Instrum. (1)

F. R. Tolmon and J. G. Wood, J. Sci. Instrum. 33, 236 (1956).
[CrossRef]

Opt. Eng. (1)

K. D. Stumpf, Opt. Eng. 18, 648 (1979).
[CrossRef]

Pro. SPIE (1)

M. Davidson, K. Kaufman, I. Mazor, and F. Cohen, Pro. SPIE 775, 233 (1987).
[CrossRef]

Other (2)

K. Creath, in Progress in Optics, E. Wolf, ed. (Elsevier, New York, 1988), Vol. 26, pp. 349–393.
[CrossRef]

D. C. Ghiglia and M. D. Pritt, Two-Dimensional Phase Unwrapping, Theory, Algorithms, and Software (Wiley-Interscience, New York, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup. The illumination source is a filtered tungsten halogen lamp. The PZT makes the interferometric objective oscillate. The CCD camera records four images per oscillation period. Phase maps are calculated and displayed in real time.

Fig. 2
Fig. 2

Topographic image of a mask for the manufacture of integrated circuits with a 10×, 0.3-NA Mirau objective (Nikon). Field of view, 500 μm×500 μm. Average height of the structures, 70  nm.

Fig. 3
Fig. 3

Phase maps from the surface of a spreading oil drop. Time between successive images, 100  ms; acquisition time for each image, 20  ms; field of view, 500 μm×500 μm.

Fig. 4
Fig. 4

Topographic image of a polished silicon wafer (10×, 0.3-NA Mirau objective; Nikon). Field of view, 500 μm×500 μm.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

It=I¯+Acosϕ+ψsin2πft+θ,
Ep=p-1T/4pT/4Itdt,p=1,2,3,4.
tanϕ=E1-E2-E3+E4E1-E2+E3-E4.
ϕ=4πh/λβ,
Δzλ=0.08γkN,

Metrics