Abstract

Variations in fiber-cladding diameter on a nanometer scale were measured along millimeter to centimeter lengths by use of whispering-gallery modes (WGMs) in the elastic scattering of the fiber. The fiber was side coupled with a wavelength-tunable Gaussian beam. The scattered light was imaged 1:1 onto a multichannel photodiode array detector. Based on the WGM wavelength shifts along the fiber, the taper of the fiber cladding’s diameter was measured on a nanometer/millimeter scale. The fiber’s surface roughness amplitude (in nanometers) and granular size 100 μm along centimeter-length fibers could also be revealed by use of higher-Q resonances.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Young, S. E. Mechels, and P. D. Hale, J. Res. Natl. Inst. Stand. Technol. 98, 203 (1993).
    [CrossRef]
  2. M. A. G. Abushagur and N. George, Appl. Opt. 19, 2031 (1980).
    [CrossRef] [PubMed]
  3. M. B. van der Mark and L. Bosselaar, J. Lightwave Technol. 12, 1 (1994).
    [CrossRef]
  4. J. F. Owen, P. W. Barber, B. J. Messinger, and R. K. Chang, Opt. Lett. 6, 272 (1981).
    [CrossRef] [PubMed]
  5. A. W. Poon and R. K. Chang, in Technical Digest of Symposium on Optical Fiber Measurement, G. W. Day, D. L. Franzen, and P. A. Williams, eds., NIST Spec. Publ.930, 73 (1998).
  6. T. A. Birks, J. C. Knight, and T. E. Dimmick, IEEE Photon. Technol. Lett. 12, 182 (2000).
    [CrossRef]

2000 (1)

T. A. Birks, J. C. Knight, and T. E. Dimmick, IEEE Photon. Technol. Lett. 12, 182 (2000).
[CrossRef]

1994 (1)

M. B. van der Mark and L. Bosselaar, J. Lightwave Technol. 12, 1 (1994).
[CrossRef]

1993 (1)

M. Young, S. E. Mechels, and P. D. Hale, J. Res. Natl. Inst. Stand. Technol. 98, 203 (1993).
[CrossRef]

1981 (1)

1980 (1)

Abushagur, M. A. G.

Barber, P. W.

Birks, T. A.

T. A. Birks, J. C. Knight, and T. E. Dimmick, IEEE Photon. Technol. Lett. 12, 182 (2000).
[CrossRef]

Bosselaar, L.

M. B. van der Mark and L. Bosselaar, J. Lightwave Technol. 12, 1 (1994).
[CrossRef]

Chang, R. K.

J. F. Owen, P. W. Barber, B. J. Messinger, and R. K. Chang, Opt. Lett. 6, 272 (1981).
[CrossRef] [PubMed]

A. W. Poon and R. K. Chang, in Technical Digest of Symposium on Optical Fiber Measurement, G. W. Day, D. L. Franzen, and P. A. Williams, eds., NIST Spec. Publ.930, 73 (1998).

Dimmick, T. E.

T. A. Birks, J. C. Knight, and T. E. Dimmick, IEEE Photon. Technol. Lett. 12, 182 (2000).
[CrossRef]

George, N.

Hale, P. D.

M. Young, S. E. Mechels, and P. D. Hale, J. Res. Natl. Inst. Stand. Technol. 98, 203 (1993).
[CrossRef]

Knight, J. C.

T. A. Birks, J. C. Knight, and T. E. Dimmick, IEEE Photon. Technol. Lett. 12, 182 (2000).
[CrossRef]

Mechels, S. E.

M. Young, S. E. Mechels, and P. D. Hale, J. Res. Natl. Inst. Stand. Technol. 98, 203 (1993).
[CrossRef]

Messinger, B. J.

Owen, J. F.

Poon, A. W.

A. W. Poon and R. K. Chang, in Technical Digest of Symposium on Optical Fiber Measurement, G. W. Day, D. L. Franzen, and P. A. Williams, eds., NIST Spec. Publ.930, 73 (1998).

van der Mark, M. B.

M. B. van der Mark and L. Bosselaar, J. Lightwave Technol. 12, 1 (1994).
[CrossRef]

Young, M.

M. Young, S. E. Mechels, and P. D. Hale, J. Res. Natl. Inst. Stand. Technol. 98, 203 (1993).
[CrossRef]

Appl. Opt. (1)

IEEE Photon. Technol. Lett. (1)

T. A. Birks, J. C. Knight, and T. E. Dimmick, IEEE Photon. Technol. Lett. 12, 182 (2000).
[CrossRef]

J. Lightwave Technol. (1)

M. B. van der Mark and L. Bosselaar, J. Lightwave Technol. 12, 1 (1994).
[CrossRef]

J. Res. Natl. Inst. Stand. Technol. (1)

M. Young, S. E. Mechels, and P. D. Hale, J. Res. Natl. Inst. Stand. Technol. 98, 203 (1993).
[CrossRef]

Opt. Lett. (1)

Other (1)

A. W. Poon and R. K. Chang, in Technical Digest of Symposium on Optical Fiber Measurement, G. W. Day, D. L. Franzen, and P. A. Williams, eds., NIST Spec. Publ.930, 73 (1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) 3-D plot of the elastic scattering spectra of an optical fiber measured simultaneously along an 7mm length. The WGM wavelength shifts along the entire length indicate that the fiber is tapered. (b) Expanded view of the four resonance modes (denoted ad) shifted along the fiber with a similar slope. Not all the higher-Q modes can be recorded because of the 0.01nm steps in spectra recording. The resonance b shift (shown by the dashed line) suggests a fiber uniformity of 1 nm/mm.

Fig. 2
Fig. 2

(a) 3-D plot of the elastic scattering spectra of a fiber measured simultaneously along an 2mm length. Resonances e and f have similar wavelength shifts. Resonance e shifts are denoted A–C. A schematic of the tapered fiber is shown at the right. (b) Expanded view of section A plotted along a 1-mm range compared with that of section B plotted along a 0.25-mm range.

Fig. 3
Fig. 3

(a) 3-D plot of the elastic scattering spectra of a fiber measured simultaneously along an 8mm length. High-Q resonance g has essentially the same wavelength over the entire length. (b) Spatial scattering intensity profile at high-Q WGM g (vertically displaced) is compared with that at an off-resonance wavelength. Given the 0.01nm steps in spectra recording, the randomly distributed spatial peaks (at wavelength g) suggest a <2nm surface roughness amplitude. The minimum width of the observed spatial peaks is 100 μm.

Metrics