Abstract

Chaotic optical communication with fast chaotic pulsing semiconductor lasers is experimentally demonstrated. Both a pulse stream at a 500-MHz repetition rate and a pseudorandom bit sequence at a 2.5-Gbit/s bit rate are successfully transmitted. The quality of synchronization in a chaos-modulation scheme is examined. The quality of message recovery is correlated to the quality of chaos synchronization.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Kocarev and U. Parlitz, Phys. Rev. Lett. 74, 5028–5031 (1995).
    [Crossref] [PubMed]
  2. C. W. Wu and L. O. Chua, Int. J. Bifurcation Chaos 3, 1619–1627 (1993).
    [Crossref]
  3. L. Larger, J. P. Goedgebuer, and F. Delorme, Phys. Rev. E 57, 6618–6624 (1998).
    [Crossref]
  4. S. Sivaprakasam and K. A. Shore, IEEE J. Quantum Electron. 36, 35–39 (2000).
    [Crossref]
  5. G. D. VanWiggeren and R. Roy, Int. J. Bifurcation Chaos 9, 2129–2156 (1999).
    [Crossref]
  6. L. G. Luo, P. L. Chu, and H. F. Liu, IEEE Photon. Technol. Lett. 12, 269–271 (2000).
    [Crossref]
  7. S. Tang and J. M. Liu, IEEE J. Quantum Electron. 37, 329–336 (2001).
    [Crossref]
  8. S. Tang and J. M. Liu, Opt. Lett. 26, 596–598 (2001).
    [Crossref]

2001 (2)

S. Tang and J. M. Liu, IEEE J. Quantum Electron. 37, 329–336 (2001).
[Crossref]

S. Tang and J. M. Liu, Opt. Lett. 26, 596–598 (2001).
[Crossref]

2000 (2)

L. G. Luo, P. L. Chu, and H. F. Liu, IEEE Photon. Technol. Lett. 12, 269–271 (2000).
[Crossref]

S. Sivaprakasam and K. A. Shore, IEEE J. Quantum Electron. 36, 35–39 (2000).
[Crossref]

1999 (1)

G. D. VanWiggeren and R. Roy, Int. J. Bifurcation Chaos 9, 2129–2156 (1999).
[Crossref]

1998 (1)

L. Larger, J. P. Goedgebuer, and F. Delorme, Phys. Rev. E 57, 6618–6624 (1998).
[Crossref]

1995 (1)

L. Kocarev and U. Parlitz, Phys. Rev. Lett. 74, 5028–5031 (1995).
[Crossref] [PubMed]

1993 (1)

C. W. Wu and L. O. Chua, Int. J. Bifurcation Chaos 3, 1619–1627 (1993).
[Crossref]

Chu, P. L.

L. G. Luo, P. L. Chu, and H. F. Liu, IEEE Photon. Technol. Lett. 12, 269–271 (2000).
[Crossref]

Chua, L. O.

C. W. Wu and L. O. Chua, Int. J. Bifurcation Chaos 3, 1619–1627 (1993).
[Crossref]

Delorme, F.

L. Larger, J. P. Goedgebuer, and F. Delorme, Phys. Rev. E 57, 6618–6624 (1998).
[Crossref]

Goedgebuer, J. P.

L. Larger, J. P. Goedgebuer, and F. Delorme, Phys. Rev. E 57, 6618–6624 (1998).
[Crossref]

Kocarev, L.

L. Kocarev and U. Parlitz, Phys. Rev. Lett. 74, 5028–5031 (1995).
[Crossref] [PubMed]

Larger, L.

L. Larger, J. P. Goedgebuer, and F. Delorme, Phys. Rev. E 57, 6618–6624 (1998).
[Crossref]

Liu, H. F.

L. G. Luo, P. L. Chu, and H. F. Liu, IEEE Photon. Technol. Lett. 12, 269–271 (2000).
[Crossref]

Liu, J. M.

S. Tang and J. M. Liu, IEEE J. Quantum Electron. 37, 329–336 (2001).
[Crossref]

S. Tang and J. M. Liu, Opt. Lett. 26, 596–598 (2001).
[Crossref]

Luo, L. G.

L. G. Luo, P. L. Chu, and H. F. Liu, IEEE Photon. Technol. Lett. 12, 269–271 (2000).
[Crossref]

Parlitz, U.

L. Kocarev and U. Parlitz, Phys. Rev. Lett. 74, 5028–5031 (1995).
[Crossref] [PubMed]

Roy, R.

G. D. VanWiggeren and R. Roy, Int. J. Bifurcation Chaos 9, 2129–2156 (1999).
[Crossref]

Shore, K. A.

S. Sivaprakasam and K. A. Shore, IEEE J. Quantum Electron. 36, 35–39 (2000).
[Crossref]

Sivaprakasam, S.

S. Sivaprakasam and K. A. Shore, IEEE J. Quantum Electron. 36, 35–39 (2000).
[Crossref]

Tang, S.

S. Tang and J. M. Liu, IEEE J. Quantum Electron. 37, 329–336 (2001).
[Crossref]

S. Tang and J. M. Liu, Opt. Lett. 26, 596–598 (2001).
[Crossref]

VanWiggeren, G. D.

G. D. VanWiggeren and R. Roy, Int. J. Bifurcation Chaos 9, 2129–2156 (1999).
[Crossref]

Wu, C. W.

C. W. Wu and L. O. Chua, Int. J. Bifurcation Chaos 3, 1619–1627 (1993).
[Crossref]

IEEE J. Quantum Electron. (2)

S. Sivaprakasam and K. A. Shore, IEEE J. Quantum Electron. 36, 35–39 (2000).
[Crossref]

S. Tang and J. M. Liu, IEEE J. Quantum Electron. 37, 329–336 (2001).
[Crossref]

IEEE Photon. Technol. Lett. (1)

L. G. Luo, P. L. Chu, and H. F. Liu, IEEE Photon. Technol. Lett. 12, 269–271 (2000).
[Crossref]

Int. J. Bifurcation Chaos (2)

G. D. VanWiggeren and R. Roy, Int. J. Bifurcation Chaos 9, 2129–2156 (1999).
[Crossref]

C. W. Wu and L. O. Chua, Int. J. Bifurcation Chaos 3, 1619–1627 (1993).
[Crossref]

Opt. Lett. (1)

Phys. Rev. E (1)

L. Larger, J. P. Goedgebuer, and F. Delorme, Phys. Rev. E 57, 6618–6624 (1998).
[Crossref]

Phys. Rev. Lett. (1)

L. Kocarev and U. Parlitz, Phys. Rev. Lett. 74, 5028–5031 (1995).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the chaotic communication system with chaotic pulsing semiconductor lasers for encoding and decoding messages through additive chaos modulation. LDs, laser diodes; PDs, photodetectors; A’s, amplifiers.

Fig. 2
Fig. 2

Time series and correlation plots of the transmitter and receiver outputs: (a), (b) before the signal is encoded; (c), (d) after the signal is encoded. Tx, output of the transmitter; Rx, output of the receiver. Here ρ is the correlation coefficient between Tx and Rx.

Fig. 3
Fig. 3

Transmission of a pulse stream at a 500-MHz repetition rate. Time series of received signal (top), receiver laser output (second from top), recovered signal (third), and encoded signal (bottom).

Fig. 4
Fig. 4

Transmission of a pseudorandom nonreturn-to-zero bit sequence at 2.5  Gbits/s. Each time series has the same meaning as the respective series in Fig.  3.

Metrics