Abstract

We report a novel technique for the synchronization of two different femtosecond solid-state lasers by crossing of both laser pulses in a Kerr medium. Stable dual-wavelength femtosecond pulses at central wavelengths of 820 and 1250  nm have been obtained. The tolerance of cavity-length mismatch is 0.6 μm, where the pulse widths of the Ti:sapphire and the Cr:forsterite lasers are 18 and 40 fs, respectively, at average powers of 600 and 110 mW. The typical timing jitter derived from the cross correlation is less than 3 fs.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. E. Spence, P. N. Kean, and W. Sibbett, Opt. Lett. 16, 42 (1991).
    [CrossRef] [PubMed]
  2. A. Seas, V. Petricevic, and R. R. Alfano, Opt. Lett. 18, 891 (1993).
    [CrossRef]
  3. A. Sennaroglu, C. R. Pollock, and H. Nathel, Opt. Lett. 19, 390 (1994).
    [PubMed]
  4. D. E. Spence, W. E. Sleat, J. M. Evans, W. Sibbett, and J. D. Kafka, Opt. Commun. 101, 286 (1993).
    [CrossRef]
  5. T. Miura, K. Kobayashi, K. Takasago, Z. Zhang, K. Torizuka, and F. Kannari, Opt. Lett. 25, 1795 (2000).
    [CrossRef]
  6. R. K. Shelton, L. S. Ma, H. C. Kapteyn, M. M. Murnane, and J. Ye, in Conference on Lasers and Electro-Optics, 2001 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2001), paper CTuG2.
  7. D. R. Dykaar and S. B. Darack, Opt. Lett. 18, 634 (1993).
    [CrossRef]
  8. J. M. Evans, D. E. Spence, D. Burns, and W. Sibbett, Opt. Lett. 18, 1074 (1993).
    [CrossRef]
  9. Z. Zhang and T. Yagi, Opt. Lett. 18, 2126 (1993).
    [CrossRef]
  10. W. Shuicai, Z. Changjun, H. Junfang, Y. Hongru, X. Dong, and H. Xun, Appl. Phys. B 68, 211 (1999).
    [CrossRef]
  11. A. Leitenstorfer, C. Fürst, and A. Laubereau, Opt. Lett. 20, 916 (1995).
    [CrossRef] [PubMed]
  12. Y. Kobayashi and K. Torizuka, Opt. Lett. 25, 856 (2000).
    [CrossRef]
  13. M. T. Asaki, C. P. Huang, D. Garvey, J. Zhou, H. C. Kapteyn, and M. M. Murnane, Opt. Lett. 18, 977 (1993).
    [CrossRef] [PubMed]
  14. Z. Zhang, K. Torizuka, T. Itatani, K. Kobayashi, T. Sugaya, T. Nakagawa, and H. Takahashi, Opt. Lett. 23, 1465 (1998).
    [CrossRef]
  15. C. Fürst, A. Leitenstorfer, and A. Laubereau, IEEE J. Sel. Top. Quantum Electron. 2, 473 (1996).
    [CrossRef]

2000 (2)

1999 (1)

W. Shuicai, Z. Changjun, H. Junfang, Y. Hongru, X. Dong, and H. Xun, Appl. Phys. B 68, 211 (1999).
[CrossRef]

1998 (1)

1996 (1)

C. Fürst, A. Leitenstorfer, and A. Laubereau, IEEE J. Sel. Top. Quantum Electron. 2, 473 (1996).
[CrossRef]

1995 (1)

1994 (1)

1993 (6)

1991 (1)

Alfano, R. R.

Asaki, M. T.

Burns, D.

Changjun, Z.

W. Shuicai, Z. Changjun, H. Junfang, Y. Hongru, X. Dong, and H. Xun, Appl. Phys. B 68, 211 (1999).
[CrossRef]

Darack, S. B.

Dong, X.

W. Shuicai, Z. Changjun, H. Junfang, Y. Hongru, X. Dong, and H. Xun, Appl. Phys. B 68, 211 (1999).
[CrossRef]

Dykaar, D. R.

Evans, J. M.

D. E. Spence, W. E. Sleat, J. M. Evans, W. Sibbett, and J. D. Kafka, Opt. Commun. 101, 286 (1993).
[CrossRef]

J. M. Evans, D. E. Spence, D. Burns, and W. Sibbett, Opt. Lett. 18, 1074 (1993).
[CrossRef]

Fürst, C.

C. Fürst, A. Leitenstorfer, and A. Laubereau, IEEE J. Sel. Top. Quantum Electron. 2, 473 (1996).
[CrossRef]

A. Leitenstorfer, C. Fürst, and A. Laubereau, Opt. Lett. 20, 916 (1995).
[CrossRef] [PubMed]

Garvey, D.

Hongru, Y.

W. Shuicai, Z. Changjun, H. Junfang, Y. Hongru, X. Dong, and H. Xun, Appl. Phys. B 68, 211 (1999).
[CrossRef]

Huang, C. P.

Itatani, T.

Junfang, H.

W. Shuicai, Z. Changjun, H. Junfang, Y. Hongru, X. Dong, and H. Xun, Appl. Phys. B 68, 211 (1999).
[CrossRef]

Kafka, J. D.

D. E. Spence, W. E. Sleat, J. M. Evans, W. Sibbett, and J. D. Kafka, Opt. Commun. 101, 286 (1993).
[CrossRef]

Kannari, F.

Kapteyn, H. C.

M. T. Asaki, C. P. Huang, D. Garvey, J. Zhou, H. C. Kapteyn, and M. M. Murnane, Opt. Lett. 18, 977 (1993).
[CrossRef] [PubMed]

R. K. Shelton, L. S. Ma, H. C. Kapteyn, M. M. Murnane, and J. Ye, in Conference on Lasers and Electro-Optics, 2001 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2001), paper CTuG2.

Kean, P. N.

Kobayashi, K.

Kobayashi, Y.

Laubereau, A.

C. Fürst, A. Leitenstorfer, and A. Laubereau, IEEE J. Sel. Top. Quantum Electron. 2, 473 (1996).
[CrossRef]

A. Leitenstorfer, C. Fürst, and A. Laubereau, Opt. Lett. 20, 916 (1995).
[CrossRef] [PubMed]

Leitenstorfer, A.

C. Fürst, A. Leitenstorfer, and A. Laubereau, IEEE J. Sel. Top. Quantum Electron. 2, 473 (1996).
[CrossRef]

A. Leitenstorfer, C. Fürst, and A. Laubereau, Opt. Lett. 20, 916 (1995).
[CrossRef] [PubMed]

Ma, L. S.

R. K. Shelton, L. S. Ma, H. C. Kapteyn, M. M. Murnane, and J. Ye, in Conference on Lasers and Electro-Optics, 2001 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2001), paper CTuG2.

Miura, T.

Murnane, M. M.

M. T. Asaki, C. P. Huang, D. Garvey, J. Zhou, H. C. Kapteyn, and M. M. Murnane, Opt. Lett. 18, 977 (1993).
[CrossRef] [PubMed]

R. K. Shelton, L. S. Ma, H. C. Kapteyn, M. M. Murnane, and J. Ye, in Conference on Lasers and Electro-Optics, 2001 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2001), paper CTuG2.

Nakagawa, T.

Nathel, H.

Petricevic, V.

Pollock, C. R.

Seas, A.

Sennaroglu, A.

Shelton, R. K.

R. K. Shelton, L. S. Ma, H. C. Kapteyn, M. M. Murnane, and J. Ye, in Conference on Lasers and Electro-Optics, 2001 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2001), paper CTuG2.

Shuicai, W.

W. Shuicai, Z. Changjun, H. Junfang, Y. Hongru, X. Dong, and H. Xun, Appl. Phys. B 68, 211 (1999).
[CrossRef]

Sibbett, W.

Sleat, W. E.

D. E. Spence, W. E. Sleat, J. M. Evans, W. Sibbett, and J. D. Kafka, Opt. Commun. 101, 286 (1993).
[CrossRef]

Spence, D. E.

Sugaya, T.

Takahashi, H.

Takasago, K.

Torizuka, K.

Xun, H.

W. Shuicai, Z. Changjun, H. Junfang, Y. Hongru, X. Dong, and H. Xun, Appl. Phys. B 68, 211 (1999).
[CrossRef]

Yagi, T.

Ye, J.

R. K. Shelton, L. S. Ma, H. C. Kapteyn, M. M. Murnane, and J. Ye, in Conference on Lasers and Electro-Optics, 2001 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2001), paper CTuG2.

Zhang, Z.

Zhou, J.

Appl. Phys. B (1)

W. Shuicai, Z. Changjun, H. Junfang, Y. Hongru, X. Dong, and H. Xun, Appl. Phys. B 68, 211 (1999).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

C. Fürst, A. Leitenstorfer, and A. Laubereau, IEEE J. Sel. Top. Quantum Electron. 2, 473 (1996).
[CrossRef]

Opt. Commun. (1)

D. E. Spence, W. E. Sleat, J. M. Evans, W. Sibbett, and J. D. Kafka, Opt. Commun. 101, 286 (1993).
[CrossRef]

Opt. Lett. (11)

Other (1)

R. K. Shelton, L. S. Ma, H. C. Kapteyn, M. M. Murnane, and J. Ye, in Conference on Lasers and Electro-Optics, 2001 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2001), paper CTuG2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the two-color Ti:sapphire and Cr:forsterite lasers. M1–M7 (CVI), mirrors with radii of curvature of 10 cm. Two pairs (M1 and M2, M3 and M4) were half-cut from two 12.7-mm round mirrors. M8, mini mirror of 10×1 mm size. Mirrors M1, M2, and M8 are coated at 850 nm; M3–M7 are coated at 1300  nm. P1, P2, fused-silica prisms; P3, P4, SF6 prisms; PDs, fast photodiodes.

Fig. 2
Fig. 2

Difference in repetition rates (ΔfRT, filled circles) of Ti:sapphire and Cr:forsterite lasers versus mirror displacement from (a) decreasing and (b) increasing cavity lengths of the Ti:sapphire laser. The synchronization occurs in the range where ΔfRT remains 0. The repetition rate of the Ti:sapphire laser ( fRT, open squares) is also plotted for reference. We subtracted 76 848 700 Hz from the exact repetition rate to easily scale the ordinate.

Fig. 3
Fig. 3

Fringe-resolved autocorrelation traces of (a) Ti:sapphire and (b) Cr:forsterite lasers.

Fig. 4
Fig. 4

(a) Cross-correlation trace and (b) intensity fluctuation of the SFG between two pulse trains. The cross-correlation FWHM is 74±2 fs; the timing jitter is <3 fs.

Metrics