Abstract

We propose a technique for measuring both pulse width and amplitude jitter noises of high-repetition-rate optical pulse trains and the cross correlation between these noises as well. The technique is based on time-domain amplitude demodulation of three harmonic components of the detected pulse train. We applied this technique to characterize noises of a gigahertz optical pulse train generated by an actively mode-locked Er-doped fiber laser. Correlation between pulse width jitter and pulse amplitude jitter was observed at low frequencies in this laser. Unlike relaxation oscillation noise, low-frequency noise is free from pulse energy jitter. Owing to its ability to measure pulse width jitter in addition to amplitude and phase jitters, this technique is of great interest for characterizing noises of a wide variety of optical pulse train sources.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Tamura and M. Nakazawa, Opt. Lett. 23, 1360 (1998).
    [CrossRef]
  2. H. Tsuchida, Opt. Lett. 24, 1434 (1999).
    [CrossRef]
  3. P. W. Juodawlkis, J. C. Twichell, J. L. Wasserman, G. E. Betts, and R. C. Williamson, Opt. Lett. 26, 289 (2001).
    [CrossRef]
  4. D. von der Linde, Appl. Phys. B 39, 201 (1986).
    [CrossRef]
  5. L. P. Chen, Y. Wang, and J.-M. Liu, IEEE J. Quantum Electron. 32, 1817 (1996).
    [CrossRef]
  6. H. Tsuchida, Opt. Lett. 23, 286 (1998).
    [CrossRef]
  7. H. Tsuchida, Opt. Lett. 23, 1686 (1998).
    [CrossRef]
  8. I. G. Fuss, IEEE J. Quantum Electron. 30, 2707 (1994).
    [CrossRef]
  9. R. Kiyan, O. Deparis, O. Pottiez, P. Mégret, and M. Blondel, Electron. Lett. 34, 2410 (1998).
    [CrossRef]

2001 (1)

1999 (1)

1998 (4)

1996 (1)

L. P. Chen, Y. Wang, and J.-M. Liu, IEEE J. Quantum Electron. 32, 1817 (1996).
[CrossRef]

1994 (1)

I. G. Fuss, IEEE J. Quantum Electron. 30, 2707 (1994).
[CrossRef]

1986 (1)

D. von der Linde, Appl. Phys. B 39, 201 (1986).
[CrossRef]

Betts, G. E.

Blondel, M.

R. Kiyan, O. Deparis, O. Pottiez, P. Mégret, and M. Blondel, Electron. Lett. 34, 2410 (1998).
[CrossRef]

Chen, L. P.

L. P. Chen, Y. Wang, and J.-M. Liu, IEEE J. Quantum Electron. 32, 1817 (1996).
[CrossRef]

Deparis, O.

R. Kiyan, O. Deparis, O. Pottiez, P. Mégret, and M. Blondel, Electron. Lett. 34, 2410 (1998).
[CrossRef]

Fuss, I. G.

I. G. Fuss, IEEE J. Quantum Electron. 30, 2707 (1994).
[CrossRef]

Juodawlkis, P. W.

Kiyan, R.

R. Kiyan, O. Deparis, O. Pottiez, P. Mégret, and M. Blondel, Electron. Lett. 34, 2410 (1998).
[CrossRef]

Liu, J.-M.

L. P. Chen, Y. Wang, and J.-M. Liu, IEEE J. Quantum Electron. 32, 1817 (1996).
[CrossRef]

Mégret, P.

R. Kiyan, O. Deparis, O. Pottiez, P. Mégret, and M. Blondel, Electron. Lett. 34, 2410 (1998).
[CrossRef]

Nakazawa, M.

Pottiez, O.

R. Kiyan, O. Deparis, O. Pottiez, P. Mégret, and M. Blondel, Electron. Lett. 34, 2410 (1998).
[CrossRef]

Tamura, K.

Tsuchida, H.

Twichell, J. C.

von der Linde, D.

D. von der Linde, Appl. Phys. B 39, 201 (1986).
[CrossRef]

Wang, Y.

L. P. Chen, Y. Wang, and J.-M. Liu, IEEE J. Quantum Electron. 32, 1817 (1996).
[CrossRef]

Wasserman, J. L.

Williamson, R. C.

Appl. Phys. B (1)

D. von der Linde, Appl. Phys. B 39, 201 (1986).
[CrossRef]

Electron. Lett. (1)

R. Kiyan, O. Deparis, O. Pottiez, P. Mégret, and M. Blondel, Electron. Lett. 34, 2410 (1998).
[CrossRef]

IEEE J. Quantum Electron. (2)

L. P. Chen, Y. Wang, and J.-M. Liu, IEEE J. Quantum Electron. 32, 1817 (1996).
[CrossRef]

I. G. Fuss, IEEE J. Quantum Electron. 30, 2707 (1994).
[CrossRef]

Opt. Lett. (5)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Bottom to top, PSDs Sϵ1f, Sϵ2f, and Sϵ3f obtained from time series ϵ1t, ϵ2t, and ϵ3t, respectively.

Fig. 2
Fig. 2

PSDs Sϵf, Sτf, and -ReSϵτf in the frequency range 10  Hz–3  kHz. Inset, coherence function γϵτ2f in the same frequency range.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Vnt=Vn01+ϵtsinnωrt+nϕt,
T+ΔT×HT+ΔTω=T×HTω1+1-βT2ω2τ,
Vnt=Vn01+ϵt+1-βT2n2ωr2τt×sinnωrt+nϕt.
ϵnt=ϵt+1-βT2n2ωr2τt.
Sϵnf=Sϵf+1-Kn22Sτf+21-Kn2ReSϵτf,

Metrics