Abstract

The coupling of an ultrashort laser pulse into a single-mode optical communication fiber gives rise to two propagating pulses as a result of the excitation of two guided modes, the fundamental, LP01, and the leaky, LP11. Such a phenomenon provides a new approach to the study of the propagation properties of the LP11 mode. An experiment with tunable 110-fs pulses at a wavelength near 1550  nm is described. Information about the group velocity, the polarization-rotation length, the attenuation coefficient, and the cutoff wavelength of the LP11 mode is obtained in a simple and direct way for various fibers.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E.-G. Neumann, Single-Mode Fibers (Springer-Verlag, Berlin, 1988).
    [CrossRef]
  2. The effective cutoff wavelength is usually measured following a reference test method recommended by professional organizations; see, for instance, Chap  6 of Ref.  1.
  3. K. Abe, Y. Lacroix, L. Bonnell, and Z. Jakubczyk, J. Lightwave Technol. 10, 401 (1992).
    [CrossRef]
  4. S. J. Garth and C. Pask, J. Lightwave Technol. 8, 129 (1990).
    [CrossRef]
  5. K. A. H. Van Leeuwen and H. T. Nijnuis, Opt. Lett. 9, 252 (1984).
    [CrossRef] [PubMed]
  6. J. C. Goodwin and P. J. Vella, J. Lightwave Technol. 9, 954 (1991).
    [CrossRef]
  7. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983).
  8. N. Karasawa, S. Nakamura, N. Nakagawa, M. Shibata, R. Morita, H. Shigekawa, and M. Yamashita, IEEE J. Quantum Electron. 37, 398 (2001).
    [CrossRef]

2001 (1)

N. Karasawa, S. Nakamura, N. Nakagawa, M. Shibata, R. Morita, H. Shigekawa, and M. Yamashita, IEEE J. Quantum Electron. 37, 398 (2001).
[CrossRef]

1992 (1)

K. Abe, Y. Lacroix, L. Bonnell, and Z. Jakubczyk, J. Lightwave Technol. 10, 401 (1992).
[CrossRef]

1991 (1)

J. C. Goodwin and P. J. Vella, J. Lightwave Technol. 9, 954 (1991).
[CrossRef]

1990 (1)

S. J. Garth and C. Pask, J. Lightwave Technol. 8, 129 (1990).
[CrossRef]

1984 (1)

Abe, K.

K. Abe, Y. Lacroix, L. Bonnell, and Z. Jakubczyk, J. Lightwave Technol. 10, 401 (1992).
[CrossRef]

Bonnell, L.

K. Abe, Y. Lacroix, L. Bonnell, and Z. Jakubczyk, J. Lightwave Technol. 10, 401 (1992).
[CrossRef]

Garth, S. J.

S. J. Garth and C. Pask, J. Lightwave Technol. 8, 129 (1990).
[CrossRef]

Goodwin, J. C.

J. C. Goodwin and P. J. Vella, J. Lightwave Technol. 9, 954 (1991).
[CrossRef]

Jakubczyk, Z.

K. Abe, Y. Lacroix, L. Bonnell, and Z. Jakubczyk, J. Lightwave Technol. 10, 401 (1992).
[CrossRef]

Karasawa, N.

N. Karasawa, S. Nakamura, N. Nakagawa, M. Shibata, R. Morita, H. Shigekawa, and M. Yamashita, IEEE J. Quantum Electron. 37, 398 (2001).
[CrossRef]

Lacroix, Y.

K. Abe, Y. Lacroix, L. Bonnell, and Z. Jakubczyk, J. Lightwave Technol. 10, 401 (1992).
[CrossRef]

Love, J. D.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983).

Morita, R.

N. Karasawa, S. Nakamura, N. Nakagawa, M. Shibata, R. Morita, H. Shigekawa, and M. Yamashita, IEEE J. Quantum Electron. 37, 398 (2001).
[CrossRef]

Nakagawa, N.

N. Karasawa, S. Nakamura, N. Nakagawa, M. Shibata, R. Morita, H. Shigekawa, and M. Yamashita, IEEE J. Quantum Electron. 37, 398 (2001).
[CrossRef]

Nakamura, S.

N. Karasawa, S. Nakamura, N. Nakagawa, M. Shibata, R. Morita, H. Shigekawa, and M. Yamashita, IEEE J. Quantum Electron. 37, 398 (2001).
[CrossRef]

Neumann, E.-G.

E.-G. Neumann, Single-Mode Fibers (Springer-Verlag, Berlin, 1988).
[CrossRef]

Nijnuis, H. T.

Pask, C.

S. J. Garth and C. Pask, J. Lightwave Technol. 8, 129 (1990).
[CrossRef]

Shibata, M.

N. Karasawa, S. Nakamura, N. Nakagawa, M. Shibata, R. Morita, H. Shigekawa, and M. Yamashita, IEEE J. Quantum Electron. 37, 398 (2001).
[CrossRef]

Shigekawa, H.

N. Karasawa, S. Nakamura, N. Nakagawa, M. Shibata, R. Morita, H. Shigekawa, and M. Yamashita, IEEE J. Quantum Electron. 37, 398 (2001).
[CrossRef]

Snyder, A. W.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983).

Van Leeuwen, K. A. H.

Vella, P. J.

J. C. Goodwin and P. J. Vella, J. Lightwave Technol. 9, 954 (1991).
[CrossRef]

Yamashita, M.

N. Karasawa, S. Nakamura, N. Nakagawa, M. Shibata, R. Morita, H. Shigekawa, and M. Yamashita, IEEE J. Quantum Electron. 37, 398 (2001).
[CrossRef]

IEEE J. Quantum Electron. (1)

N. Karasawa, S. Nakamura, N. Nakagawa, M. Shibata, R. Morita, H. Shigekawa, and M. Yamashita, IEEE J. Quantum Electron. 37, 398 (2001).
[CrossRef]

J. Lightwave Technol. (3)

J. C. Goodwin and P. J. Vella, J. Lightwave Technol. 9, 954 (1991).
[CrossRef]

K. Abe, Y. Lacroix, L. Bonnell, and Z. Jakubczyk, J. Lightwave Technol. 10, 401 (1992).
[CrossRef]

S. J. Garth and C. Pask, J. Lightwave Technol. 8, 129 (1990).
[CrossRef]

Opt. Lett. (1)

Other (3)

E.-G. Neumann, Single-Mode Fibers (Springer-Verlag, Berlin, 1988).
[CrossRef]

The effective cutoff wavelength is usually measured following a reference test method recommended by professional organizations; see, for instance, Chap  6 of Ref.  1.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Autocorrelation function and optical spectrum observed at the output of a DSF with L=12 cm by launching laser pulses at λ=1550 nm.

Fig. 2
Fig. 2

Delay between the LP01 pulse and the LP11 pulse plotted as a function of the propagation length L for two fibers, each at two different values of λ. The straight lines are interpolating lines.

Fig. 3
Fig. 3

Transverse distribution of the output intensity for the LCF at two distinct values of L. To make the observation of the rotation pattern easier, we present, besides the direct images, the contour plots. (a) 5  cm, (b) 10  cm.

Fig. 4
Fig. 4

Intensity of the LP11 mode at propagation distance L, relative to the input intensity, plotted as a function of λ, for a SMR fiber. The straight lines are interpolating lines.

Tables (1)

Tables Icon

Table 1 Group-Velocity Delay per Unit Length between the LP01 Mode and the LP11 Mode for Various Fibers and Wavelengths

Metrics