Abstract

We report a theoretical and experimental investigation of the dispersion property of long-period fiber gratings in B/Ge codoped fiber. A novel concept of a mode ultrasensitive zone defined by a region in which the phase-matching conditions are close to the dispersion turning points is proposed. The transition from a dual-resonance state to a dispersion turning point is revealed for a set of ultrasensitive-zone gratings during the UV-writing process. We explore the sensitivity characteristics near the dispersion turning points, with the aim of implementing two types of temperature sensor with sensitivity 2 orders of magnitude higher than that of the conventional long-period gratings.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
    [CrossRef]
  2. V. Bhatia and A. M. Vengsarkar, Opt. Lett. 21, 692 (1996).
    [CrossRef] [PubMed]
  3. X. Shu, X. Zhu, S. Jiang, W. Shi, and D. Huang, Electron. Lett. 35, 649 (1999).
    [CrossRef]
  4. V. Grubsky and J. Feinberg, Opt. Lett. 25, 203 (2000).
    [CrossRef]
  5. X. Shu, X. Zhu, S. Jiang, W. Shi, and D. Huang, Electron. Lett. 35, 1580 (1999).
    [CrossRef]
  6. T. W. MacDougall, S. Pilevar, C. W. Haggans, and M. A. Jackson, IEEE Photon. Technol. Lett. 10, 1449 (1998).
    [CrossRef]
  7. X. Shu, T. Allsop, B. Gwandu, L. Zhang, and I. Bennion, Electron. Lett. 37, 216 (2001).
    [CrossRef]

2001 (1)

X. Shu, T. Allsop, B. Gwandu, L. Zhang, and I. Bennion, Electron. Lett. 37, 216 (2001).
[CrossRef]

2000 (1)

1999 (2)

X. Shu, X. Zhu, S. Jiang, W. Shi, and D. Huang, Electron. Lett. 35, 649 (1999).
[CrossRef]

X. Shu, X. Zhu, S. Jiang, W. Shi, and D. Huang, Electron. Lett. 35, 1580 (1999).
[CrossRef]

1998 (1)

T. W. MacDougall, S. Pilevar, C. W. Haggans, and M. A. Jackson, IEEE Photon. Technol. Lett. 10, 1449 (1998).
[CrossRef]

1996 (2)

V. Bhatia and A. M. Vengsarkar, Opt. Lett. 21, 692 (1996).
[CrossRef] [PubMed]

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

Allsop, T.

X. Shu, T. Allsop, B. Gwandu, L. Zhang, and I. Bennion, Electron. Lett. 37, 216 (2001).
[CrossRef]

Bennion, I.

X. Shu, T. Allsop, B. Gwandu, L. Zhang, and I. Bennion, Electron. Lett. 37, 216 (2001).
[CrossRef]

Bhatia, V.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

V. Bhatia and A. M. Vengsarkar, Opt. Lett. 21, 692 (1996).
[CrossRef] [PubMed]

Erdogan, T.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

Feinberg, J.

Grubsky, V.

Gwandu, B.

X. Shu, T. Allsop, B. Gwandu, L. Zhang, and I. Bennion, Electron. Lett. 37, 216 (2001).
[CrossRef]

Haggans, C. W.

T. W. MacDougall, S. Pilevar, C. W. Haggans, and M. A. Jackson, IEEE Photon. Technol. Lett. 10, 1449 (1998).
[CrossRef]

Huang, D.

X. Shu, X. Zhu, S. Jiang, W. Shi, and D. Huang, Electron. Lett. 35, 1580 (1999).
[CrossRef]

X. Shu, X. Zhu, S. Jiang, W. Shi, and D. Huang, Electron. Lett. 35, 649 (1999).
[CrossRef]

Jackson, M. A.

T. W. MacDougall, S. Pilevar, C. W. Haggans, and M. A. Jackson, IEEE Photon. Technol. Lett. 10, 1449 (1998).
[CrossRef]

Jiang, S.

X. Shu, X. Zhu, S. Jiang, W. Shi, and D. Huang, Electron. Lett. 35, 649 (1999).
[CrossRef]

X. Shu, X. Zhu, S. Jiang, W. Shi, and D. Huang, Electron. Lett. 35, 1580 (1999).
[CrossRef]

Judkins, J. B.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

Lemaire, P. J.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

MacDougall, T. W.

T. W. MacDougall, S. Pilevar, C. W. Haggans, and M. A. Jackson, IEEE Photon. Technol. Lett. 10, 1449 (1998).
[CrossRef]

Pilevar, S.

T. W. MacDougall, S. Pilevar, C. W. Haggans, and M. A. Jackson, IEEE Photon. Technol. Lett. 10, 1449 (1998).
[CrossRef]

Shi, W.

X. Shu, X. Zhu, S. Jiang, W. Shi, and D. Huang, Electron. Lett. 35, 649 (1999).
[CrossRef]

X. Shu, X. Zhu, S. Jiang, W. Shi, and D. Huang, Electron. Lett. 35, 1580 (1999).
[CrossRef]

Shu, X.

X. Shu, T. Allsop, B. Gwandu, L. Zhang, and I. Bennion, Electron. Lett. 37, 216 (2001).
[CrossRef]

X. Shu, X. Zhu, S. Jiang, W. Shi, and D. Huang, Electron. Lett. 35, 1580 (1999).
[CrossRef]

X. Shu, X. Zhu, S. Jiang, W. Shi, and D. Huang, Electron. Lett. 35, 649 (1999).
[CrossRef]

Sipe, J. E.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

Vengsarkar, A. M.

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

V. Bhatia and A. M. Vengsarkar, Opt. Lett. 21, 692 (1996).
[CrossRef] [PubMed]

Zhang, L.

X. Shu, T. Allsop, B. Gwandu, L. Zhang, and I. Bennion, Electron. Lett. 37, 216 (2001).
[CrossRef]

Zhu, X.

X. Shu, X. Zhu, S. Jiang, W. Shi, and D. Huang, Electron. Lett. 35, 649 (1999).
[CrossRef]

X. Shu, X. Zhu, S. Jiang, W. Shi, and D. Huang, Electron. Lett. 35, 1580 (1999).
[CrossRef]

Electron. Lett. (3)

X. Shu, X. Zhu, S. Jiang, W. Shi, and D. Huang, Electron. Lett. 35, 649 (1999).
[CrossRef]

X. Shu, X. Zhu, S. Jiang, W. Shi, and D. Huang, Electron. Lett. 35, 1580 (1999).
[CrossRef]

X. Shu, T. Allsop, B. Gwandu, L. Zhang, and I. Bennion, Electron. Lett. 37, 216 (2001).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

T. W. MacDougall, S. Pilevar, C. W. Haggans, and M. A. Jackson, IEEE Photon. Technol. Lett. 10, 1449 (1998).
[CrossRef]

J. Lightwave Technol. (1)

A. M. Vengsarkar, P. J. Lemaire, J. B. Judkins, V. Bhatia, T. Erdogan, and J. E. Sipe, J. Lightwave Technol. 14, 58 (1996).
[CrossRef]

Opt. Lett. (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Calculated relationship between resonant wavelengths and grating periods for the first 30 cladding modes in B/Ge codoped fiber. Open circles, dispersion turning points of the phase curves. The region between the two dotted curves is the defined mode-ultrasensitive zone in which γ>5.

Fig. 2
Fig. 2

Differential group index between the fundamental core mode and the first 30 cladding modes for a B/Ge codoped fiber plotted versus wavelengths. The gray region between two dotted curves is the marked mode-ultrasensitive zone γ>5.

Fig. 3
Fig. 3

Measured transmission spectra before and after the transition from the dual-resonance state (solid curves) to the dispersion turning point (dotted curves). (a) Λ=202.5 μm, (b) Λ=175 μm, (c) Λ=153 μm, (d) Λ=133 μm, (e) Λ=120 μm, (f) Λ=109 μm.

Fig. 4
Fig. 4

Comparative results of dispersion turning-point resonance wavelengths between simulation and measurement for the 11th–18th cladding modes.

Fig. 5
Fig. 5

Measured spectral variation of the sensor based on the 11th-mode resonance of a 202.5μm period grating at different temperatures. Inset, dependence of the dual-resonance wavelength on temperature.

Fig. 6
Fig. 6

Measured spectral variation of the sensor based on the 12th-mode resonance of a 175μm period grating at different temperatures. Inset, dependence of the transmission on temperature.

Metrics