Abstract

The resonant mechanisms associated with dual-grating dielectric resonant grating reflection filters are described by use of an interference approach. These structures consist of two modulated regions of equal period separated by a higher-index film region. We show that the spectral linewidth is dependent on the separation between the modulated regions and can range from theoretically zero to approximately four times what would be obtained by use of a single-grating geometry.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. W. Day, S. S. Wang, and R. Magnusson, J. Lightwave Technol. 14, 1815 (1996).
    [CrossRef]
  2. M. Neviere, E. Popov, and R. Reinisch, J. Opt. Soc. Am. A 12, 513 (1995).
    [CrossRef]
  3. T. Tamir and S. Zhang, J. Lightwave Technol. 14, 914 (1996).
    [CrossRef]
  4. S. M. Norton, T. Erdogan, and G. M. Morris, J. Opt. Soc. Am. A 14, 629 (1997).
    [CrossRef]
  5. D. Rosenblatt, A. Sharon, and A. A. Friesem, IEEE J. Quantum Electron. 33, 2038 (1997).
    [CrossRef]
  6. D. K. Jacob, S. C. Dunn, and M. G. Moharam, J. Opt. Soc. Am. A 17, 1241 (2000).
    [CrossRef]
  7. D. K. Jacob, S. C. Dunn, and M. G. Moharam, J. Opt. Soc. Am. A 19, 2109 (2001).
    [CrossRef]
  8. D. K. Jacob, S. C. Dunn, and M. G. Moharam, “Flat-top narrow-band spectral response obtained from cascaded resonant grating reflection filters,” Appl. Opt. (to be published )
  9. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, J. Opt. Soc. Am. A 12, 1068 (1995).
    [CrossRef]

2001 (1)

D. K. Jacob, S. C. Dunn, and M. G. Moharam, J. Opt. Soc. Am. A 19, 2109 (2001).
[CrossRef]

2000 (1)

1997 (2)

S. M. Norton, T. Erdogan, and G. M. Morris, J. Opt. Soc. Am. A 14, 629 (1997).
[CrossRef]

D. Rosenblatt, A. Sharon, and A. A. Friesem, IEEE J. Quantum Electron. 33, 2038 (1997).
[CrossRef]

1996 (2)

R. W. Day, S. S. Wang, and R. Magnusson, J. Lightwave Technol. 14, 1815 (1996).
[CrossRef]

T. Tamir and S. Zhang, J. Lightwave Technol. 14, 914 (1996).
[CrossRef]

1995 (2)

Day, R. W.

R. W. Day, S. S. Wang, and R. Magnusson, J. Lightwave Technol. 14, 1815 (1996).
[CrossRef]

Dunn, S. C.

D. K. Jacob, S. C. Dunn, and M. G. Moharam, J. Opt. Soc. Am. A 19, 2109 (2001).
[CrossRef]

D. K. Jacob, S. C. Dunn, and M. G. Moharam, J. Opt. Soc. Am. A 17, 1241 (2000).
[CrossRef]

D. K. Jacob, S. C. Dunn, and M. G. Moharam, “Flat-top narrow-band spectral response obtained from cascaded resonant grating reflection filters,” Appl. Opt. (to be published )

Erdogan, T.

Friesem, A. A.

D. Rosenblatt, A. Sharon, and A. A. Friesem, IEEE J. Quantum Electron. 33, 2038 (1997).
[CrossRef]

Gaylord, T. K.

Grann, E. B.

Jacob, D. K.

D. K. Jacob, S. C. Dunn, and M. G. Moharam, J. Opt. Soc. Am. A 19, 2109 (2001).
[CrossRef]

D. K. Jacob, S. C. Dunn, and M. G. Moharam, J. Opt. Soc. Am. A 17, 1241 (2000).
[CrossRef]

D. K. Jacob, S. C. Dunn, and M. G. Moharam, “Flat-top narrow-band spectral response obtained from cascaded resonant grating reflection filters,” Appl. Opt. (to be published )

Magnusson, R.

R. W. Day, S. S. Wang, and R. Magnusson, J. Lightwave Technol. 14, 1815 (1996).
[CrossRef]

Moharam, M. G.

D. K. Jacob, S. C. Dunn, and M. G. Moharam, J. Opt. Soc. Am. A 19, 2109 (2001).
[CrossRef]

D. K. Jacob, S. C. Dunn, and M. G. Moharam, J. Opt. Soc. Am. A 17, 1241 (2000).
[CrossRef]

M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, J. Opt. Soc. Am. A 12, 1068 (1995).
[CrossRef]

D. K. Jacob, S. C. Dunn, and M. G. Moharam, “Flat-top narrow-band spectral response obtained from cascaded resonant grating reflection filters,” Appl. Opt. (to be published )

Morris, G. M.

Neviere, M.

Norton, S. M.

Pommet, D. A.

Popov, E.

Reinisch, R.

Rosenblatt, D.

D. Rosenblatt, A. Sharon, and A. A. Friesem, IEEE J. Quantum Electron. 33, 2038 (1997).
[CrossRef]

Sharon, A.

D. Rosenblatt, A. Sharon, and A. A. Friesem, IEEE J. Quantum Electron. 33, 2038 (1997).
[CrossRef]

Tamir, T.

T. Tamir and S. Zhang, J. Lightwave Technol. 14, 914 (1996).
[CrossRef]

Wang, S. S.

R. W. Day, S. S. Wang, and R. Magnusson, J. Lightwave Technol. 14, 1815 (1996).
[CrossRef]

Zhang, S.

T. Tamir and S. Zhang, J. Lightwave Technol. 14, 914 (1996).
[CrossRef]

IEEE J. Quantum Electron. (1)

D. Rosenblatt, A. Sharon, and A. A. Friesem, IEEE J. Quantum Electron. 33, 2038 (1997).
[CrossRef]

J. Lightwave Technol. (2)

R. W. Day, S. S. Wang, and R. Magnusson, J. Lightwave Technol. 14, 1815 (1996).
[CrossRef]

T. Tamir and S. Zhang, J. Lightwave Technol. 14, 914 (1996).
[CrossRef]

J. Opt. Soc. Am. A (5)

Other (1)

D. K. Jacob, S. C. Dunn, and M. G. Moharam, “Flat-top narrow-band spectral response obtained from cascaded resonant grating reflection filters,” Appl. Opt. (to be published )

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Dual-grating resonant grating reflection filter geometry.

Fig. 2
Fig. 2

Interference modal and rigorous results for the spectral linewidth of a dual-grating resonant grating reflection filter normalized by the linewidth of the single-grating structure (grating A).

Fig. 3
Fig. 3

Interference model and rigorous results for the spectral linewidth of an overcoated resonant grating reflection filter normalized by the linewidth of the single-grating structure (grating B).

Fig. 4
Fig. 4

Modified effective grating strengths for dual grating A, dual grating B, and the grating A–grating B combination.

Fig. 5
Fig. 5

Comparison of spectral linewidths obtained rigorously with those obtained by use of the interference-waveguide (I-W) approach for dual grating A, dual grating B, and the grating A–grating B combination.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ΔλFWHM=2ηd1-ηd1/2/dϕdλ,
ηd=ηd,1+ηd,2-2ηd,1ηd,21/2sinδ.
ΔλFWHM,dualΔλFWHM,single=ηd/1-ηd1/2ηd/1-ηd1/2.

Metrics