Abstract

Fully three-dimensional spatial solitons in bulk nematic liquid crystals form self-consistent waveguides that are able to confine a weak, collinear copolarized signal at different wavelengths and with large trapping angles. We use a milliwatt cw source to generate a soliton and, by angular steering of the soliton, spatially readdress the guided signal.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. I. Stegeman, D. N. Christodoulides, and M. Segev, IEEE J. Sel. Top. Quantum Electron. 6, 1419 (2000).
    [CrossRef]
  2. A. W. Snyder, D. J. Mitchell, L. Polodian, and F. Ladouceur, Opt. Lett. 16, 21 (1991).
    [CrossRef] [PubMed]
  3. F. Reynaud and A. Barthelemy, Europhys. Lett. 12, 401 (1990).
    [CrossRef]
  4. M. Shalaby and A. Barthelemy, Opt. Lett. 16, 1472 (1991).
    [CrossRef] [PubMed]
  5. T. Shi and S. Chi, Opt. Lett. 15, 1123 (1990).
    [CrossRef] [PubMed]
  6. L. Friedrich, G. I. Stegeman, P. Millar, C. J. Hamilton, and S. J. Aitchison, Opt. Lett. 23, 1438 (1998).
    [CrossRef]
  7. P. L. Kelley, Phys. Rev. Lett. 15, 1005 (1965).
    [CrossRef]
  8. E. Braun, L. P. Faucheux, A. Libchaber, D. W. McLaughlin, D. J. Muraki, and M. J. Shelley, Europhys. Lett. 23, 239 (1993).
    [CrossRef]
  9. E. Braun, L. P. Faucheux, and A. Libchaber, Phys. Rev. A 48, 611 (1993).
    [CrossRef] [PubMed]
  10. M. Warenghem, J. F. Henninot, and G. Abbate, Opt. Express 2, 483 (1998), http://www.opticsexpress.org .
    [CrossRef] [PubMed]
  11. F. Derrien, J. F. Henninot, M. Warenghem, and G. Abbate, J. Opt. A 2, 332 (2000).
    [CrossRef]
  12. M. A. Karpierz, M. Sierakowski, M. Swillo, and T. Wolinsky, Mol. Cryst. Liq. Cryst. 320, 157 (1998).
    [CrossRef]
  13. M. Peccianti, A. de Rossi, G. Assanto, A. de Luca, C. Umeton, and I. C. Khoo, Appl. Phys. Lett. 77, 7 (2000).
    [CrossRef]
  14. N. V. Tabyrian, A. V. Sukhov, and B. Ya. Zel’dovich, Mol. Cryst. Liq. Cryst. 136, 1 (1986).
    [CrossRef]
  15. I. C. Khoo, Liquid Crystals: Physical Properties and Nonlinear Optical Phenomena (Wiley, New York, 1995).
  16. M. J. Weber, ed., CRC Handbook of Laser Science and Technology (CRC Press, New York, 1995), Suppl.  2.
  17. P. G. De Gennes and J. Prost, The Physics of Liquid Crystals, 2nd ed. (Oxford U. Press, London, 1993).

2000 (3)

G. I. Stegeman, D. N. Christodoulides, and M. Segev, IEEE J. Sel. Top. Quantum Electron. 6, 1419 (2000).
[CrossRef]

F. Derrien, J. F. Henninot, M. Warenghem, and G. Abbate, J. Opt. A 2, 332 (2000).
[CrossRef]

M. Peccianti, A. de Rossi, G. Assanto, A. de Luca, C. Umeton, and I. C. Khoo, Appl. Phys. Lett. 77, 7 (2000).
[CrossRef]

1998 (3)

1993 (2)

E. Braun, L. P. Faucheux, A. Libchaber, D. W. McLaughlin, D. J. Muraki, and M. J. Shelley, Europhys. Lett. 23, 239 (1993).
[CrossRef]

E. Braun, L. P. Faucheux, and A. Libchaber, Phys. Rev. A 48, 611 (1993).
[CrossRef] [PubMed]

1991 (2)

1990 (2)

T. Shi and S. Chi, Opt. Lett. 15, 1123 (1990).
[CrossRef] [PubMed]

F. Reynaud and A. Barthelemy, Europhys. Lett. 12, 401 (1990).
[CrossRef]

1986 (1)

N. V. Tabyrian, A. V. Sukhov, and B. Ya. Zel’dovich, Mol. Cryst. Liq. Cryst. 136, 1 (1986).
[CrossRef]

1965 (1)

P. L. Kelley, Phys. Rev. Lett. 15, 1005 (1965).
[CrossRef]

Abbate, G.

Aitchison, S. J.

Assanto, G.

M. Peccianti, A. de Rossi, G. Assanto, A. de Luca, C. Umeton, and I. C. Khoo, Appl. Phys. Lett. 77, 7 (2000).
[CrossRef]

Barthelemy, A.

M. Shalaby and A. Barthelemy, Opt. Lett. 16, 1472 (1991).
[CrossRef] [PubMed]

F. Reynaud and A. Barthelemy, Europhys. Lett. 12, 401 (1990).
[CrossRef]

Braun, E.

E. Braun, L. P. Faucheux, and A. Libchaber, Phys. Rev. A 48, 611 (1993).
[CrossRef] [PubMed]

E. Braun, L. P. Faucheux, A. Libchaber, D. W. McLaughlin, D. J. Muraki, and M. J. Shelley, Europhys. Lett. 23, 239 (1993).
[CrossRef]

Chi, S.

Christodoulides, D. N.

G. I. Stegeman, D. N. Christodoulides, and M. Segev, IEEE J. Sel. Top. Quantum Electron. 6, 1419 (2000).
[CrossRef]

De Gennes, P. G.

P. G. De Gennes and J. Prost, The Physics of Liquid Crystals, 2nd ed. (Oxford U. Press, London, 1993).

de Luca, A.

M. Peccianti, A. de Rossi, G. Assanto, A. de Luca, C. Umeton, and I. C. Khoo, Appl. Phys. Lett. 77, 7 (2000).
[CrossRef]

de Rossi, A.

M. Peccianti, A. de Rossi, G. Assanto, A. de Luca, C. Umeton, and I. C. Khoo, Appl. Phys. Lett. 77, 7 (2000).
[CrossRef]

Derrien, F.

F. Derrien, J. F. Henninot, M. Warenghem, and G. Abbate, J. Opt. A 2, 332 (2000).
[CrossRef]

Faucheux, L. P.

E. Braun, L. P. Faucheux, A. Libchaber, D. W. McLaughlin, D. J. Muraki, and M. J. Shelley, Europhys. Lett. 23, 239 (1993).
[CrossRef]

E. Braun, L. P. Faucheux, and A. Libchaber, Phys. Rev. A 48, 611 (1993).
[CrossRef] [PubMed]

Friedrich, L.

Hamilton, C. J.

Henninot, J. F.

Karpierz, M. A.

M. A. Karpierz, M. Sierakowski, M. Swillo, and T. Wolinsky, Mol. Cryst. Liq. Cryst. 320, 157 (1998).
[CrossRef]

Kelley, P. L.

P. L. Kelley, Phys. Rev. Lett. 15, 1005 (1965).
[CrossRef]

Khoo, I. C.

M. Peccianti, A. de Rossi, G. Assanto, A. de Luca, C. Umeton, and I. C. Khoo, Appl. Phys. Lett. 77, 7 (2000).
[CrossRef]

I. C. Khoo, Liquid Crystals: Physical Properties and Nonlinear Optical Phenomena (Wiley, New York, 1995).

Ladouceur, F.

Libchaber, A.

E. Braun, L. P. Faucheux, and A. Libchaber, Phys. Rev. A 48, 611 (1993).
[CrossRef] [PubMed]

E. Braun, L. P. Faucheux, A. Libchaber, D. W. McLaughlin, D. J. Muraki, and M. J. Shelley, Europhys. Lett. 23, 239 (1993).
[CrossRef]

McLaughlin, D. W.

E. Braun, L. P. Faucheux, A. Libchaber, D. W. McLaughlin, D. J. Muraki, and M. J. Shelley, Europhys. Lett. 23, 239 (1993).
[CrossRef]

Millar, P.

Mitchell, D. J.

Muraki, D. J.

E. Braun, L. P. Faucheux, A. Libchaber, D. W. McLaughlin, D. J. Muraki, and M. J. Shelley, Europhys. Lett. 23, 239 (1993).
[CrossRef]

Peccianti, M.

M. Peccianti, A. de Rossi, G. Assanto, A. de Luca, C. Umeton, and I. C. Khoo, Appl. Phys. Lett. 77, 7 (2000).
[CrossRef]

Polodian, L.

Prost, J.

P. G. De Gennes and J. Prost, The Physics of Liquid Crystals, 2nd ed. (Oxford U. Press, London, 1993).

Reynaud, F.

F. Reynaud and A. Barthelemy, Europhys. Lett. 12, 401 (1990).
[CrossRef]

Segev, M.

G. I. Stegeman, D. N. Christodoulides, and M. Segev, IEEE J. Sel. Top. Quantum Electron. 6, 1419 (2000).
[CrossRef]

Shalaby, M.

Shelley, M. J.

E. Braun, L. P. Faucheux, A. Libchaber, D. W. McLaughlin, D. J. Muraki, and M. J. Shelley, Europhys. Lett. 23, 239 (1993).
[CrossRef]

Shi, T.

Sierakowski, M.

M. A. Karpierz, M. Sierakowski, M. Swillo, and T. Wolinsky, Mol. Cryst. Liq. Cryst. 320, 157 (1998).
[CrossRef]

Snyder, A. W.

Stegeman, G. I.

G. I. Stegeman, D. N. Christodoulides, and M. Segev, IEEE J. Sel. Top. Quantum Electron. 6, 1419 (2000).
[CrossRef]

L. Friedrich, G. I. Stegeman, P. Millar, C. J. Hamilton, and S. J. Aitchison, Opt. Lett. 23, 1438 (1998).
[CrossRef]

Sukhov, A. V.

N. V. Tabyrian, A. V. Sukhov, and B. Ya. Zel’dovich, Mol. Cryst. Liq. Cryst. 136, 1 (1986).
[CrossRef]

Swillo, M.

M. A. Karpierz, M. Sierakowski, M. Swillo, and T. Wolinsky, Mol. Cryst. Liq. Cryst. 320, 157 (1998).
[CrossRef]

Tabyrian, N. V.

N. V. Tabyrian, A. V. Sukhov, and B. Ya. Zel’dovich, Mol. Cryst. Liq. Cryst. 136, 1 (1986).
[CrossRef]

Umeton, C.

M. Peccianti, A. de Rossi, G. Assanto, A. de Luca, C. Umeton, and I. C. Khoo, Appl. Phys. Lett. 77, 7 (2000).
[CrossRef]

Warenghem, M.

Wolinsky, T.

M. A. Karpierz, M. Sierakowski, M. Swillo, and T. Wolinsky, Mol. Cryst. Liq. Cryst. 320, 157 (1998).
[CrossRef]

Zel’dovich, B. Ya.

N. V. Tabyrian, A. V. Sukhov, and B. Ya. Zel’dovich, Mol. Cryst. Liq. Cryst. 136, 1 (1986).
[CrossRef]

Appl. Phys. Lett. (1)

M. Peccianti, A. de Rossi, G. Assanto, A. de Luca, C. Umeton, and I. C. Khoo, Appl. Phys. Lett. 77, 7 (2000).
[CrossRef]

Europhys. Lett. (2)

F. Reynaud and A. Barthelemy, Europhys. Lett. 12, 401 (1990).
[CrossRef]

E. Braun, L. P. Faucheux, A. Libchaber, D. W. McLaughlin, D. J. Muraki, and M. J. Shelley, Europhys. Lett. 23, 239 (1993).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

G. I. Stegeman, D. N. Christodoulides, and M. Segev, IEEE J. Sel. Top. Quantum Electron. 6, 1419 (2000).
[CrossRef]

J. Opt. A (1)

F. Derrien, J. F. Henninot, M. Warenghem, and G. Abbate, J. Opt. A 2, 332 (2000).
[CrossRef]

Mol. Cryst. Liq. Cryst. (2)

M. A. Karpierz, M. Sierakowski, M. Swillo, and T. Wolinsky, Mol. Cryst. Liq. Cryst. 320, 157 (1998).
[CrossRef]

N. V. Tabyrian, A. V. Sukhov, and B. Ya. Zel’dovich, Mol. Cryst. Liq. Cryst. 136, 1 (1986).
[CrossRef]

Opt. Express (1)

Opt. Lett. (4)

Phys. Rev. A (1)

E. Braun, L. P. Faucheux, and A. Libchaber, Phys. Rev. A 48, 611 (1993).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

P. L. Kelley, Phys. Rev. Lett. 15, 1005 (1965).
[CrossRef]

Other (3)

I. C. Khoo, Liquid Crystals: Physical Properties and Nonlinear Optical Phenomena (Wiley, New York, 1995).

M. J. Weber, ed., CRC Handbook of Laser Science and Technology (CRC Press, New York, 1995), Suppl.  2.

P. G. De Gennes and J. Prost, The Physics of Liquid Crystals, 2nd ed. (Oxford U. Press, London, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Sketch of the NLC cell, indicating the interfaces and the initial ideal orientation of the molecular director with respect to the cell boundaries and the axes when V=0.

Fig. 2
Fig. 2

Experimental results with an Ar+ beam with 2.2-mW power focused to <1.5 μm in front of a 75μm-thick NLC cell: (a) Diffraction of a y-polarized beam, with a 6.9° angular divergence (half-angle); (b) spatial soliton from an x-polarized input in a cell with an applied low frequency 1kHz external voltage of 1  V (rms). (The slant visible in the figure is an artifact.) Owing to the gray-scale mapping of the pictures, the black-colored portions within the beams correspond to the most intensely illuminated regions.

Fig. 3
Fig. 3

Experimental results of propagation of a weak <20μW x-polarized beam (signal) at 633  nm when a tilt θ is introduced between that beam (held normal to the interface) and the soliton obtained with the inclined Ar+ beam at 2.2  mW [Fig.  2(b)] and (a) θ=0°, (b) θ=-2.3°, (c) θ=+2.3°. Some radiated light is visible in (b) and (c) as a result of incomplete signal coupling through the finite N.A.  of the waveguide.

Fig. 4
Fig. 4

Transverse intensity distributions of the trapped signal beam (Fig.  3) after its propagation for 0.9 mm. A lateral shift as large as 70 μm is achieved as the green soliton is tilted from (b) θ=-2.3° to (c) θ=+2.3°. The slight asymmetry is due to a small offset introduced between the beams when one beam (the pump) was tilted with respect to the other.

Metrics