Abstract

A diode-pumped Yb:YAG laser with a novel end-pumped zigzag slab architecture has been developed. This architecture provides uniform transverse pump profiles, conduction cooling of the laser crystal, mechanical robustness, and ready scalability to higher powers. At room temperature the laser emits 415  W of cw power with 30% optical conversion efficiency. An image-inverting stable resonator permits a high-brightness output of 252  W with linear polarization and an average M2 beam quality of 1.45. Q-switched pulse energies of as much as 20  mJ and average Q-switched powers of as much as 150  W were obtained while M2 was maintained at <1.5.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. C. Honea, R. J. Beach, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, S. B. Sutton, S. A. Payne, P. V. Avizonis, R. S. Monroe, and D. G. Harris, Opt. Lett. 25, 805 (2000).
    [CrossRef]
  2. C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hugel, IEEE J. Sel. Top. Quantum Electron. 6, 650 (2000).
    [CrossRef]
  3. H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, IEEE J. Sel. Top. Quantum Electron. 3, 105 (1997).
    [CrossRef]
  4. T. S. Rutherford, W. M. Tulloch, S. Sinha, and R. L. Byer, Opt. Lett. 26, 986 (2001).
    [CrossRef]
  5. W. Koechner, Solid-State Laser Engineering, 5th ed. (Springer-Verlag, Berlin, 1999), p. 374.
  6. H. Injeyan and C. S. Hoefer, “End pumped zig-zag slab laser gain medium,” U.S. patent6,094,297 (July25, 2000).
  7. T. Y. Fan, IEEE J. Quantum Electron. 29, 1457 (1993).
    [CrossRef]

2001 (1)

2000 (2)

1997 (1)

H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, IEEE J. Sel. Top. Quantum Electron. 3, 105 (1997).
[CrossRef]

1993 (1)

T. Y. Fan, IEEE J. Quantum Electron. 29, 1457 (1993).
[CrossRef]

Avizonis, P. V.

Beach, R. J.

Bruesselbach, H. W.

H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, IEEE J. Sel. Top. Quantum Electron. 3, 105 (1997).
[CrossRef]

Byer, R. L.

Byren, R. W.

H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, IEEE J. Sel. Top. Quantum Electron. 3, 105 (1997).
[CrossRef]

Contag, K.

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hugel, IEEE J. Sel. Top. Quantum Electron. 6, 650 (2000).
[CrossRef]

Emanuel, M. A.

Fan, T. Y.

T. Y. Fan, IEEE J. Quantum Electron. 29, 1457 (1993).
[CrossRef]

Giesen, A.

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hugel, IEEE J. Sel. Top. Quantum Electron. 6, 650 (2000).
[CrossRef]

Harris, D. G.

Hoefer, C. S.

H. Injeyan and C. S. Hoefer, “End pumped zig-zag slab laser gain medium,” U.S. patent6,094,297 (July25, 2000).

Honea, E. C.

Hugel, H.

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hugel, IEEE J. Sel. Top. Quantum Electron. 6, 650 (2000).
[CrossRef]

Injeyan, H.

H. Injeyan and C. S. Hoefer, “End pumped zig-zag slab laser gain medium,” U.S. patent6,094,297 (July25, 2000).

Koechner, W.

W. Koechner, Solid-State Laser Engineering, 5th ed. (Springer-Verlag, Berlin, 1999), p. 374.

Larionov, M.

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hugel, IEEE J. Sel. Top. Quantum Electron. 6, 650 (2000).
[CrossRef]

Mitchell, S. C.

Monroe, R. S.

Payne, S. A.

Reeder, R. A.

H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, IEEE J. Sel. Top. Quantum Electron. 3, 105 (1997).
[CrossRef]

Rutherford, T. S.

Sinha, S.

Skidmore, J. A.

Stewen, C.

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hugel, IEEE J. Sel. Top. Quantum Electron. 6, 650 (2000).
[CrossRef]

Sumida, D. S.

H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, IEEE J. Sel. Top. Quantum Electron. 3, 105 (1997).
[CrossRef]

Sutton, S. B.

Tulloch, W. M.

IEEE J. Quantum Electron. (1)

T. Y. Fan, IEEE J. Quantum Electron. 29, 1457 (1993).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

C. Stewen, K. Contag, M. Larionov, A. Giesen, and H. Hugel, IEEE J. Sel. Top. Quantum Electron. 6, 650 (2000).
[CrossRef]

H. W. Bruesselbach, D. S. Sumida, R. A. Reeder, and R. W. Byren, IEEE J. Sel. Top. Quantum Electron. 3, 105 (1997).
[CrossRef]

Opt. Lett. (2)

Other (2)

W. Koechner, Solid-State Laser Engineering, 5th ed. (Springer-Verlag, Berlin, 1999), p. 374.

H. Injeyan and C. S. Hoefer, “End pumped zig-zag slab laser gain medium,” U.S. patent6,094,297 (July25, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of conduction-cooled, end-pumped zigzag slab architecture: AR, antireflective.

Fig. 2
Fig. 2

Multimode output power (squares) and linear fit to 44% slope efficiency (dotted curve).

Fig. 3
Fig. 3

Image-inverting resonator for high-brightness operation: HR, high reflector; BW, Brewster windows; T, transmission; fx fy, cylindrical lens along the x y axis; dxdy, end-mirror displacement to eliminate quadratic OPD (focus) in the two axes. For cw operation fx=fy=115 mm, and for Q-switched operation fx=fy=200 mm.

Fig. 4
Fig. 4

High-brightness output power and beam quality. Mirror positions dx and dy were optimized at each power level to cancel the extraction-dependent thermal lens (range of 12  mm from 0 to full power).

Fig. 5
Fig. 5

Calculated dependence of TEM00 mode radius on mirror displacement d in the absence of thermal lensing for f=+11.5 cm. The effective lens at the slab is the sum of the thermal lens and the focal power 2d/f2 imposed by the mirror displacement. The arrows indicate the dynamic change in spot size and resonator parameters that is due to the extraction-dependent thermal lens.

Metrics