Abstract

We report experimental results with a reflective continuous anisotropic polarizing diffraction-grating beam splitter that produces three diffraction orders. The diffraction efficiencies and polarizations of the diffracted orders are controlled through the incoming polarization state and by use of a wave plate with arbitrary orientation located between the grating and a mirror. In particular, we show experimental evidence of a diffraction triplicator—a 100% efficiency diffractive device that generates three orders with equal power.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Turunen and F. Wyrowski, eds., Diffractive Optics for Industrial and Commercial Applications (Akademie-Verlag, Berlin, 1997).
  2. H. P. Herzig, ed., Micro-optics: Elements, Systems and Applications (Taylor & Francis, London, 1997).
  3. T. Todorov and L. Nikolova, Opt. Lett. 17, 358 (1992).
    [CrossRef] [PubMed]
  4. F. Gori, Opt. Lett. 24, 584 (1999).
    [CrossRef]
  5. M. Le Docen and P. Pellat-Finet, Opt. Commun. 151, 321 (1998).
    [CrossRef]
  6. J. Tervo and J. Turunen, Opt. Lett. 25, 785 (2000).
    [CrossRef]
  7. M. Honkanen, V. Kettunen, J. Tervo, and J. Turunen, J. Mod. Opt. 47, 2351 (2000).
    [CrossRef]
  8. J. A. Davis, J. Adachi, C. R. Fernández-Pousa, and I. Moreno, Opt. Lett. 26, 587 (2001).
    [CrossRef]
  9. N. C. Pistoni, Appl. Opt. 34, 7870 (1995).
    [CrossRef] [PubMed]
  10. J. A. Davis, D. E. McNamara, D. M. Cottrell, and T. Sonehara, Appl. Opt. 39, 1549 (2000).
    [CrossRef]

2001 (1)

2000 (3)

1999 (1)

1998 (1)

M. Le Docen and P. Pellat-Finet, Opt. Commun. 151, 321 (1998).
[CrossRef]

1995 (1)

1992 (1)

Adachi, J.

Cottrell, D. M.

Davis, J. A.

Fernández-Pousa, C. R.

Gori, F.

Honkanen, M.

M. Honkanen, V. Kettunen, J. Tervo, and J. Turunen, J. Mod. Opt. 47, 2351 (2000).
[CrossRef]

Kettunen, V.

M. Honkanen, V. Kettunen, J. Tervo, and J. Turunen, J. Mod. Opt. 47, 2351 (2000).
[CrossRef]

Le Docen, M.

M. Le Docen and P. Pellat-Finet, Opt. Commun. 151, 321 (1998).
[CrossRef]

McNamara, D. E.

Moreno, I.

Nikolova, L.

Pellat-Finet, P.

M. Le Docen and P. Pellat-Finet, Opt. Commun. 151, 321 (1998).
[CrossRef]

Pistoni, N. C.

Sonehara, T.

Tervo, J.

J. Tervo and J. Turunen, Opt. Lett. 25, 785 (2000).
[CrossRef]

M. Honkanen, V. Kettunen, J. Tervo, and J. Turunen, J. Mod. Opt. 47, 2351 (2000).
[CrossRef]

Todorov, T.

Turunen, J.

M. Honkanen, V. Kettunen, J. Tervo, and J. Turunen, J. Mod. Opt. 47, 2351 (2000).
[CrossRef]

J. Tervo and J. Turunen, Opt. Lett. 25, 785 (2000).
[CrossRef]

Appl. Opt. (2)

J. Mod. Opt. (1)

M. Honkanen, V. Kettunen, J. Tervo, and J. Turunen, J. Mod. Opt. 47, 2351 (2000).
[CrossRef]

Opt. Commun. (1)

M. Le Docen and P. Pellat-Finet, Opt. Commun. 151, 321 (1998).
[CrossRef]

Opt. Lett. (4)

Other (2)

J. Turunen and F. Wyrowski, eds., Diffractive Optics for Industrial and Commercial Applications (Akademie-Verlag, Berlin, 1997).

H. P. Herzig, ed., Micro-optics: Elements, Systems and Applications (Taylor & Francis, London, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup: Pol, polarizer; Wθ,φ, wave plate with retardation φ and arbitrary orientation θ. The LCSLM has a retardation ϕyx of the y with respect to the x component of the incident light programmed into it, as shown at the left.

Fig. 2
Fig. 2

Experimental results for a quarter-wave plate with various orientations and incident linear polarized light as 45°. Output with (a) no grating, (b) the quarter-wave plate oriented at 45°, (c) the quarter-wave plate oriented at 17.6°, and (d) the quarter-wave plate oriented at 0°.

Fig. 3
Fig. 3

Experimental results with a liquid-crystal variable retarder with orientation fixed at 45° and incident linear polarized light at 45°. Output with (a) no grating, (b) a variable retarder adjusted for cosφ=0, (c) a variable retarder adjusted for tanφ=0.707, and (d) a variable retarder adjusted for sinφ=0.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Gx,y=[100exp2πix/D]=[1000]+exp2πix/D[0001].
GDx,y=JGx,ytWθ,φtJJWθ,φGx,y.
GDx,y=cosφ+isinφcos2θ[1000]+isinφsin2θexp2πix/D[01-10]-cosφ-isinφcos2θ×exp4πix/D[0001].
Eoutx=cosφ+isinφcos2θ(Ex0)+isinφsin2θexp2πix/D(Ey-Ex)-cosφ-isinφcos2θ×exp4πix/D(0Ey).
η0=cos2φ+sin2φcos22θEx2,η1=sin2φsin22θEx2+Ey2,η2=cos2φ+sin2φcos22θEy2.

Metrics