Abstract

Far-field radiation for quantum boxes located in pillar microcavities was investigated spatially and spectrally at room temperature. We have found that small-diameter pillars show directional emission for the fundamental cavity mode together with a spectral behavior dominated by the pillar’s discrete modal structure. These results may be important in the context of single-photon emitters for quantum communications.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. See, for example, C. Weisbuch and J. Rarity, eds., Microcavities and Photonic Bandgaps: Physics and Applications, Vol. 324 of NATO ASI Series E (Kluwer Academic, Dordrecht, The Netherlands, 1996).
  2. H. Benisty, J. M. Gérard, R. Houdré, J. Rarity, and C. Weisbuch, eds., Confined Photon Systems: Fundamentals and Applications (Springer-Verlag, Berlin, 1999).
    [CrossRef]
  3. H. Benisty, H. De Neve, and C. Weisbuch, IEEE J. Quantum Electron. 34, 1632 (1998).
    [CrossRef]
  4. J. Kim, O. Benson, and Y. Yamamoto, Nature 397, 500 (1999).
    [CrossRef]
  5. J. M. Gérard and B. Gayral, J. Lightwave Technol. 17, 2089 (1999).
    [CrossRef]
  6. G. S. Solomon, M. Pelton, and Y. Yamamoto, Phys. Rev. Lett. 86, 3906 (2001).
    [CrossRef]
  7. A. Kastler, Appl. Opt. 1, 17 (1962).
    [CrossRef]
  8. G. Bjork, S. Machida, Y. Yamamoto, and K. Igeta, Phys. Rev. A 44, 669 (1991).
    [CrossRef]
  9. H. Yokoyama, M. Suzuki, and Y. Nambu, Appl. Phys. Lett. 58, 2598 (1991).
    [CrossRef]
  10. H. Rigneault and S. Monneret, Phys. Rev. A 54, 2356 (1996).
    [CrossRef] [PubMed]
  11. J. M. Gérard, D. Barrier, J. Y. Marzin, R. Kuszelewicz, E. Costard, V. Thierry-Mieg, and T. Rivera, Appl. Phys. Lett. 69, 449 (1996).
    [CrossRef]
  12. A. Yariv, Optical Electronics (Saunders, San Francisco, Calif., 1991).
  13. K. Ujihara, Jpn. J. Appl. Phys. 30, 901 (1991).
    [CrossRef]

2001

G. S. Solomon, M. Pelton, and Y. Yamamoto, Phys. Rev. Lett. 86, 3906 (2001).
[CrossRef]

1999

J. Kim, O. Benson, and Y. Yamamoto, Nature 397, 500 (1999).
[CrossRef]

J. M. Gérard and B. Gayral, J. Lightwave Technol. 17, 2089 (1999).
[CrossRef]

1998

H. Benisty, H. De Neve, and C. Weisbuch, IEEE J. Quantum Electron. 34, 1632 (1998).
[CrossRef]

1996

H. Rigneault and S. Monneret, Phys. Rev. A 54, 2356 (1996).
[CrossRef] [PubMed]

J. M. Gérard, D. Barrier, J. Y. Marzin, R. Kuszelewicz, E. Costard, V. Thierry-Mieg, and T. Rivera, Appl. Phys. Lett. 69, 449 (1996).
[CrossRef]

1991

K. Ujihara, Jpn. J. Appl. Phys. 30, 901 (1991).
[CrossRef]

G. Bjork, S. Machida, Y. Yamamoto, and K. Igeta, Phys. Rev. A 44, 669 (1991).
[CrossRef]

H. Yokoyama, M. Suzuki, and Y. Nambu, Appl. Phys. Lett. 58, 2598 (1991).
[CrossRef]

1962

Barrier, D.

J. M. Gérard, D. Barrier, J. Y. Marzin, R. Kuszelewicz, E. Costard, V. Thierry-Mieg, and T. Rivera, Appl. Phys. Lett. 69, 449 (1996).
[CrossRef]

Benisty, H.

H. Benisty, H. De Neve, and C. Weisbuch, IEEE J. Quantum Electron. 34, 1632 (1998).
[CrossRef]

Benson, O.

J. Kim, O. Benson, and Y. Yamamoto, Nature 397, 500 (1999).
[CrossRef]

Bjork, G.

G. Bjork, S. Machida, Y. Yamamoto, and K. Igeta, Phys. Rev. A 44, 669 (1991).
[CrossRef]

Costard, E.

J. M. Gérard, D. Barrier, J. Y. Marzin, R. Kuszelewicz, E. Costard, V. Thierry-Mieg, and T. Rivera, Appl. Phys. Lett. 69, 449 (1996).
[CrossRef]

De Neve, H.

H. Benisty, H. De Neve, and C. Weisbuch, IEEE J. Quantum Electron. 34, 1632 (1998).
[CrossRef]

Gayral, B.

Gérard, J. M.

J. M. Gérard and B. Gayral, J. Lightwave Technol. 17, 2089 (1999).
[CrossRef]

J. M. Gérard, D. Barrier, J. Y. Marzin, R. Kuszelewicz, E. Costard, V. Thierry-Mieg, and T. Rivera, Appl. Phys. Lett. 69, 449 (1996).
[CrossRef]

Igeta, K.

G. Bjork, S. Machida, Y. Yamamoto, and K. Igeta, Phys. Rev. A 44, 669 (1991).
[CrossRef]

Kastler, A.

Kim, J.

J. Kim, O. Benson, and Y. Yamamoto, Nature 397, 500 (1999).
[CrossRef]

Kuszelewicz, R.

J. M. Gérard, D. Barrier, J. Y. Marzin, R. Kuszelewicz, E. Costard, V. Thierry-Mieg, and T. Rivera, Appl. Phys. Lett. 69, 449 (1996).
[CrossRef]

Machida, S.

G. Bjork, S. Machida, Y. Yamamoto, and K. Igeta, Phys. Rev. A 44, 669 (1991).
[CrossRef]

Marzin, J. Y.

J. M. Gérard, D. Barrier, J. Y. Marzin, R. Kuszelewicz, E. Costard, V. Thierry-Mieg, and T. Rivera, Appl. Phys. Lett. 69, 449 (1996).
[CrossRef]

Monneret, S.

H. Rigneault and S. Monneret, Phys. Rev. A 54, 2356 (1996).
[CrossRef] [PubMed]

Nambu, Y.

H. Yokoyama, M. Suzuki, and Y. Nambu, Appl. Phys. Lett. 58, 2598 (1991).
[CrossRef]

Pelton, M.

G. S. Solomon, M. Pelton, and Y. Yamamoto, Phys. Rev. Lett. 86, 3906 (2001).
[CrossRef]

Rigneault, H.

H. Rigneault and S. Monneret, Phys. Rev. A 54, 2356 (1996).
[CrossRef] [PubMed]

Rivera, T.

J. M. Gérard, D. Barrier, J. Y. Marzin, R. Kuszelewicz, E. Costard, V. Thierry-Mieg, and T. Rivera, Appl. Phys. Lett. 69, 449 (1996).
[CrossRef]

Solomon, G. S.

G. S. Solomon, M. Pelton, and Y. Yamamoto, Phys. Rev. Lett. 86, 3906 (2001).
[CrossRef]

Suzuki, M.

H. Yokoyama, M. Suzuki, and Y. Nambu, Appl. Phys. Lett. 58, 2598 (1991).
[CrossRef]

Thierry-Mieg, V.

J. M. Gérard, D. Barrier, J. Y. Marzin, R. Kuszelewicz, E. Costard, V. Thierry-Mieg, and T. Rivera, Appl. Phys. Lett. 69, 449 (1996).
[CrossRef]

Ujihara, K.

K. Ujihara, Jpn. J. Appl. Phys. 30, 901 (1991).
[CrossRef]

Weisbuch, C.

H. Benisty, H. De Neve, and C. Weisbuch, IEEE J. Quantum Electron. 34, 1632 (1998).
[CrossRef]

Yamamoto, Y.

G. S. Solomon, M. Pelton, and Y. Yamamoto, Phys. Rev. Lett. 86, 3906 (2001).
[CrossRef]

J. Kim, O. Benson, and Y. Yamamoto, Nature 397, 500 (1999).
[CrossRef]

G. Bjork, S. Machida, Y. Yamamoto, and K. Igeta, Phys. Rev. A 44, 669 (1991).
[CrossRef]

Yariv, A.

A. Yariv, Optical Electronics (Saunders, San Francisco, Calif., 1991).

Yokoyama, H.

H. Yokoyama, M. Suzuki, and Y. Nambu, Appl. Phys. Lett. 58, 2598 (1991).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

H. Yokoyama, M. Suzuki, and Y. Nambu, Appl. Phys. Lett. 58, 2598 (1991).
[CrossRef]

J. M. Gérard, D. Barrier, J. Y. Marzin, R. Kuszelewicz, E. Costard, V. Thierry-Mieg, and T. Rivera, Appl. Phys. Lett. 69, 449 (1996).
[CrossRef]

IEEE J. Quantum Electron.

H. Benisty, H. De Neve, and C. Weisbuch, IEEE J. Quantum Electron. 34, 1632 (1998).
[CrossRef]

J. Lightwave Technol.

Jpn. J. Appl. Phys.

K. Ujihara, Jpn. J. Appl. Phys. 30, 901 (1991).
[CrossRef]

Nature

J. Kim, O. Benson, and Y. Yamamoto, Nature 397, 500 (1999).
[CrossRef]

Phys. Rev. A

G. Bjork, S. Machida, Y. Yamamoto, and K. Igeta, Phys. Rev. A 44, 669 (1991).
[CrossRef]

H. Rigneault and S. Monneret, Phys. Rev. A 54, 2356 (1996).
[CrossRef] [PubMed]

Phys. Rev. Lett.

G. S. Solomon, M. Pelton, and Y. Yamamoto, Phys. Rev. Lett. 86, 3906 (2001).
[CrossRef]

Other

A. Yariv, Optical Electronics (Saunders, San Francisco, Calif., 1991).

See, for example, C. Weisbuch and J. Rarity, eds., Microcavities and Photonic Bandgaps: Physics and Applications, Vol. 324 of NATO ASI Series E (Kluwer Academic, Dordrecht, The Netherlands, 1996).

H. Benisty, J. M. Gérard, R. Houdré, J. Rarity, and C. Weisbuch, eds., Confined Photon Systems: Fundamentals and Applications (Springer-Verlag, Berlin, 1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Pillar microcavity structure, (b) experimental setup.

Fig. 2
Fig. 2

Measured emitted spectra at various angles θ. Pillar diameters (in micrometers) are labeled. CTS, photon counts on the detector during the 60-s integration time. HEpq and EHpq are the resonant guided modes of the pillar microcavities.

Fig. 3
Fig. 3

Mean diffraction angle of the HE11 mode versus structure diameter measured for pillars (filled circles) and calculated for a bare GaAs rode (open squares). Inset, experimental radiation patterns for the HE11 fundamental cavity mode for various pillar diameters.

Metrics