Abstract

A novel method of optical phase-shift detection using differential-phase-to-intensity conversion (DPIC) based on injection locking of a semiconductor laser is proposed. We predict DPIC numerically and verify it experimentally. We then demonstrate detection of OC-48 (2.48832-Gbit/s) phase-modulated signals by use of DPIC.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. C. Bordonalli, C. Walton, and A. J. Seeds, J. Lightwave Technol. 17, 328 (1999).
    [CrossRef]
  2. K. Kiasaleh, J. Lightwave Technol. 17, 165 (1999).
    [CrossRef]
  3. T. S. Koch, F. S. Chua, F. Heismann, and U. Koren, Electron. Lett. 25, 890 (1989).
    [CrossRef]
  4. H. Nakajima, Electron. Lett. 26, 1129 (1990).
    [CrossRef]
  5. C. R. Mirasso, P. Colet, and P. Garcia-Fernandez, IEEE Photon. Technol. Lett. 8, 299 (1996).
    [CrossRef]

1999 (2)

1996 (1)

C. R. Mirasso, P. Colet, and P. Garcia-Fernandez, IEEE Photon. Technol. Lett. 8, 299 (1996).
[CrossRef]

1990 (1)

H. Nakajima, Electron. Lett. 26, 1129 (1990).
[CrossRef]

1989 (1)

T. S. Koch, F. S. Chua, F. Heismann, and U. Koren, Electron. Lett. 25, 890 (1989).
[CrossRef]

Bordonalli, A. C.

Chua, F. S.

T. S. Koch, F. S. Chua, F. Heismann, and U. Koren, Electron. Lett. 25, 890 (1989).
[CrossRef]

Colet, P.

C. R. Mirasso, P. Colet, and P. Garcia-Fernandez, IEEE Photon. Technol. Lett. 8, 299 (1996).
[CrossRef]

Garcia-Fernandez, P.

C. R. Mirasso, P. Colet, and P. Garcia-Fernandez, IEEE Photon. Technol. Lett. 8, 299 (1996).
[CrossRef]

Heismann, F.

T. S. Koch, F. S. Chua, F. Heismann, and U. Koren, Electron. Lett. 25, 890 (1989).
[CrossRef]

Kiasaleh, K.

Koch, T. S.

T. S. Koch, F. S. Chua, F. Heismann, and U. Koren, Electron. Lett. 25, 890 (1989).
[CrossRef]

Koren, U.

T. S. Koch, F. S. Chua, F. Heismann, and U. Koren, Electron. Lett. 25, 890 (1989).
[CrossRef]

Mirasso, C. R.

C. R. Mirasso, P. Colet, and P. Garcia-Fernandez, IEEE Photon. Technol. Lett. 8, 299 (1996).
[CrossRef]

Nakajima, H.

H. Nakajima, Electron. Lett. 26, 1129 (1990).
[CrossRef]

Seeds, A. J.

Walton, C.

Electron. Lett. (2)

T. S. Koch, F. S. Chua, F. Heismann, and U. Koren, Electron. Lett. 25, 890 (1989).
[CrossRef]

H. Nakajima, Electron. Lett. 26, 1129 (1990).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

C. R. Mirasso, P. Colet, and P. Garcia-Fernandez, IEEE Photon. Technol. Lett. 8, 299 (1996).
[CrossRef]

J. Lightwave Technol. (2)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic of DPIC. (b) Principle of DPIC. Alternating locking and unlocking states depending on the phase of injected light induce a DPIC signal.

Fig. 2
Fig. 2

Numerical simulation: (a) phase modulation of the master laser, (b) intensity impulse on the slave laser output.

Fig. 3
Fig. 3

Experimental setup: PM, phase modulator; PC, polarization controller; EDFAs, erbium-doped fiber amplifiers; DFB LD, distributed feedback laser diode; PD, photo-detector; 3R, regeneration, reshaping, retiming circuit; BERT, bit-error rate tester.

Fig. 4
Fig. 4

Signal flows and measured BER for an OC-48 PRBS:223-1. (a) Original RZ signals, (b) DPIC signal of slave laser, (c) reshaped message, (d) BER.

Metrics