Abstract

Ultrabroadband pulses exhibit a frequency-dependent mode size owing to the wavelength dependence of free-space diffraction. Additionally, rather complex lateral dependence of the temporal pulse shape has been reported for Kerr-lens mode-locked lasers and broadband amplifier chains and in frequency-domain pulse shapers, for example. We demonstrate an ultrashort-pulse characterization technique that reveals lateral pulse-shape variations by spatially resolved amplitude and phase measurements by use of spectral phase interferometry for direct electric-field reconstruction (SPIDER). Unlike with autocorrelation techniques, with SPIDER we can obtain spatially resolved pulse characterization even after the nonlinear process. Thus, with this method the spectral phase of the pulse can be resolved very rapidly along one lateral beam axis in a single measurement.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Kane and R. Trebino, IEEE J. Quantum Electron. 29, 571 (1993).
    [CrossRef]
  2. R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. Sweetser, M. A. Krumbügel, and B. Richman, Rev. Sci. Instrum. 68, 1 (1997).
    [CrossRef]
  3. C. Iaconis and I. A. Walmsley, Opt. Lett. 23, 792 (1998).
    [CrossRef]
  4. C. Iaconis and I. A. Walmsley, IEEE J. Quantum Electron. 35, 501 (1999).
    [CrossRef]
  5. S. T. Cundiff, W. H. Knox, E. P. Ippen, and H. A. Haus, Opt. Lett. 21, 662 (1996).
    [CrossRef] [PubMed]
  6. L. Gallmann, D. H. Sutter, N. Matuschek, G. Steinmeyer, and U. Keller, Appl. Phys. B 70, 67 (2000).
    [CrossRef]
  7. L. Gallmann, D. H. Sutter, N. Matuschek, G. Steinmeyer, U. Keller, C. Iaconis, and I. A. Walmsley, Opt. Lett. 24, 1314 (1999).
    [CrossRef]
  8. T. M. Shuman, M. E. Anderson, J. Bromage, C. Iaconis, L. Waxer, and I. A. Walmsley, Opt. Express 5, 134 (1999), http://epubs.osa.org/opticsexpress.
    [CrossRef] [PubMed]
  9. C. Dorrer, B. de Beauvoir, C. Le Blanc, S. Ranc, J. P. Rousseau, J. P. Chambaret, and F. Salin, Opt. Lett. 24, 1644 (1999).
    [CrossRef]
  10. D. H. Sutter, G. Steinmeyer, L. Gallmann, N. Matuschek, F. Morier-Genoud, U. Keller, V. Scheuer, G. Angelow, and T. Tschudi, Opt. Lett. 24, 631 (1999).
    [CrossRef]
  11. G. Steinmeyer, D. H. Sutter, L. Gallmann, N. Matuschek, and U. Keller, Science 286, 1507 (1999).
    [CrossRef] [PubMed]
  12. A. Baltuska, M. S. Pshenichnikov, and D. A. Wiersma, IEEE J. Quantum Electron. 35, 459 (1999).
    [CrossRef]
  13. C. Dorrer, Opt. Lett. 24, 1532 (1999).
    [CrossRef]
  14. M. E. Anderson, L. E. E. de Araujo, E. M. Kosik, and I. A. Walmsley, Appl. Phys. B 70, 85 (2000).
    [CrossRef]

2000

L. Gallmann, D. H. Sutter, N. Matuschek, G. Steinmeyer, and U. Keller, Appl. Phys. B 70, 67 (2000).
[CrossRef]

M. E. Anderson, L. E. E. de Araujo, E. M. Kosik, and I. A. Walmsley, Appl. Phys. B 70, 85 (2000).
[CrossRef]

1999

1998

1997

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. Sweetser, M. A. Krumbügel, and B. Richman, Rev. Sci. Instrum. 68, 1 (1997).
[CrossRef]

1996

1993

D. J. Kane and R. Trebino, IEEE J. Quantum Electron. 29, 571 (1993).
[CrossRef]

Anderson, M. E.

Angelow, G.

Baltuska, A.

A. Baltuska, M. S. Pshenichnikov, and D. A. Wiersma, IEEE J. Quantum Electron. 35, 459 (1999).
[CrossRef]

Bromage, J.

Chambaret, J. P.

Cundiff, S. T.

de Araujo, L. E. E.

M. E. Anderson, L. E. E. de Araujo, E. M. Kosik, and I. A. Walmsley, Appl. Phys. B 70, 85 (2000).
[CrossRef]

de Beauvoir, B.

DeLong, K. W.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. Sweetser, M. A. Krumbügel, and B. Richman, Rev. Sci. Instrum. 68, 1 (1997).
[CrossRef]

Dorrer, C.

Fittinghoff, D. N.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. Sweetser, M. A. Krumbügel, and B. Richman, Rev. Sci. Instrum. 68, 1 (1997).
[CrossRef]

Gallmann, L.

Haus, H. A.

Iaconis, C.

Ippen, E. P.

Kane, D. J.

D. J. Kane and R. Trebino, IEEE J. Quantum Electron. 29, 571 (1993).
[CrossRef]

Keller, U.

Knox, W. H.

Kosik, E. M.

M. E. Anderson, L. E. E. de Araujo, E. M. Kosik, and I. A. Walmsley, Appl. Phys. B 70, 85 (2000).
[CrossRef]

Krumbügel, M. A.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. Sweetser, M. A. Krumbügel, and B. Richman, Rev. Sci. Instrum. 68, 1 (1997).
[CrossRef]

Le Blanc, C.

Matuschek, N.

Morier-Genoud, F.

Pshenichnikov, M. S.

A. Baltuska, M. S. Pshenichnikov, and D. A. Wiersma, IEEE J. Quantum Electron. 35, 459 (1999).
[CrossRef]

Ranc, S.

Richman, B.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. Sweetser, M. A. Krumbügel, and B. Richman, Rev. Sci. Instrum. 68, 1 (1997).
[CrossRef]

Rousseau, J. P.

Salin, F.

Scheuer, V.

Shuman, T. M.

Steinmeyer, G.

Sutter, D. H.

Sweetser, J.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. Sweetser, M. A. Krumbügel, and B. Richman, Rev. Sci. Instrum. 68, 1 (1997).
[CrossRef]

Trebino, R.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. Sweetser, M. A. Krumbügel, and B. Richman, Rev. Sci. Instrum. 68, 1 (1997).
[CrossRef]

D. J. Kane and R. Trebino, IEEE J. Quantum Electron. 29, 571 (1993).
[CrossRef]

Tschudi, T.

Walmsley, I. A.

Waxer, L.

Wiersma, D. A.

A. Baltuska, M. S. Pshenichnikov, and D. A. Wiersma, IEEE J. Quantum Electron. 35, 459 (1999).
[CrossRef]

Appl. Phys. B

L. Gallmann, D. H. Sutter, N. Matuschek, G. Steinmeyer, and U. Keller, Appl. Phys. B 70, 67 (2000).
[CrossRef]

M. E. Anderson, L. E. E. de Araujo, E. M. Kosik, and I. A. Walmsley, Appl. Phys. B 70, 85 (2000).
[CrossRef]

IEEE J. Quantum Electron.

D. J. Kane and R. Trebino, IEEE J. Quantum Electron. 29, 571 (1993).
[CrossRef]

C. Iaconis and I. A. Walmsley, IEEE J. Quantum Electron. 35, 501 (1999).
[CrossRef]

A. Baltuska, M. S. Pshenichnikov, and D. A. Wiersma, IEEE J. Quantum Electron. 35, 459 (1999).
[CrossRef]

Opt. Express

Opt. Lett.

Rev. Sci. Instrum.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. Sweetser, M. A. Krumbügel, and B. Richman, Rev. Sci. Instrum. 68, 1 (1997).
[CrossRef]

Science

G. Steinmeyer, D. H. Sutter, L. Gallmann, N. Matuschek, and U. Keller, Science 286, 1507 (1999).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Wavelength-dependent mode area of a sub-10-fs KLM Ti:sapphire laser. The spectral variation of (solid curve) the power density and (dashed curve and filled circles) the mode area reflect the dispersion oscillations of the double-chirped mirrors used inside the cavity. The dashed–dotted line shows the qualitative behavior expected from Eq.  (1 ) (up to a scaling factor).

Fig. 2
Fig. 2

Schematic picture of the mixing processes occurring in (a) broadband SHG and (b) SFG of a broadband pulse with a quasi-cw spectral slice. In SHG many different input wavelengths with differing spatial patterns are contributing to the signal at a given wavelength, whereas in SFG each individual spectral component of the signal is generated by a single mixing process.

Fig. 3
Fig. 3

Three spectra measured at different lateral positions inside the beam. For comparison the spatially integrated spectrum is also shown (shaded area).

Fig. 4
Fig. 4

Contour plot of the spatially resolved pulse spectrum. The contours are evenly spaced on a logarithmic scale and start at 0.7% of the maximum value. Note the complicated structure on the short-wavelength side.

Fig. 5
Fig. 5

Left, laterally varying temporal pulse shapes normalized to the spectrally integrated beam intensity. Right, to facilitate a direct comparison, two pulses (dotted and dashed–dotted curves) are also shown normalized to the same peak intensity. The differences are most pronounced in the temporal wings of the pulses. Nevertheless, the FWHM of the two pulses shown already differs by more than 10%.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

wz=λz0/π1+z/z021/2,

Metrics