Abstract

The bichromatic optical frequency correlation function for Rayleigh backscattering from a pulse of laser light propagating along a single-mode optical fiber has been calculated and measured. It is shown that the optical correlation frequency, Δνc, is equal to the reciprocal of pulse width τw. These results are important for the development of wavelength diversity techniques for the reduction of coherent Rayleigh noise in distributed Rayleigh backscattering single-mode optical fiber sensors.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Posey, G. A. Johnson, and S. T. Vohra, Electron. Lett. 36, 1688 (2000).
    [Crossref]
  2. H. H. Kee, G. P. Lees, and T. P. Newson, in Digest of Conference on Lasers and Electro-Optics, 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), p. 432.
  3. R. Rathod, R. D. Pechstedt, D. A. Jackson, and D. J. Webb, Opt. Lett. 19, 593 (1994).
    [Crossref] [PubMed]
  4. R. Juskaitis, A. M. Mamedov, V. T. Potapov, and S. V. Shatalin, Opt. Lett. 17, 1623 (1992).
    [Crossref] [PubMed]
  5. P. C. Wait and T. P. Newson, Opt. Commun. 131, 285 (1996).
    [Crossref]
  6. K. Shimizu, T. Horiguchi, and Y. Koyamada, J. Lightwave Technol. 10, 982 (1992).
    [Crossref]
  7. J. W. Goodman, in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, New York, 1975), Chap.  2.

2000 (1)

R. Posey, G. A. Johnson, and S. T. Vohra, Electron. Lett. 36, 1688 (2000).
[Crossref]

1996 (1)

P. C. Wait and T. P. Newson, Opt. Commun. 131, 285 (1996).
[Crossref]

1994 (1)

1992 (2)

K. Shimizu, T. Horiguchi, and Y. Koyamada, J. Lightwave Technol. 10, 982 (1992).
[Crossref]

R. Juskaitis, A. M. Mamedov, V. T. Potapov, and S. V. Shatalin, Opt. Lett. 17, 1623 (1992).
[Crossref] [PubMed]

Goodman, J. W.

J. W. Goodman, in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, New York, 1975), Chap.  2.

Horiguchi, T.

K. Shimizu, T. Horiguchi, and Y. Koyamada, J. Lightwave Technol. 10, 982 (1992).
[Crossref]

Jackson, D. A.

Johnson, G. A.

R. Posey, G. A. Johnson, and S. T. Vohra, Electron. Lett. 36, 1688 (2000).
[Crossref]

Juskaitis, R.

Kee, H. H.

H. H. Kee, G. P. Lees, and T. P. Newson, in Digest of Conference on Lasers and Electro-Optics, 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), p. 432.

Koyamada, Y.

K. Shimizu, T. Horiguchi, and Y. Koyamada, J. Lightwave Technol. 10, 982 (1992).
[Crossref]

Lees, G. P.

H. H. Kee, G. P. Lees, and T. P. Newson, in Digest of Conference on Lasers and Electro-Optics, 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), p. 432.

Mamedov, A. M.

Newson, T. P.

P. C. Wait and T. P. Newson, Opt. Commun. 131, 285 (1996).
[Crossref]

H. H. Kee, G. P. Lees, and T. P. Newson, in Digest of Conference on Lasers and Electro-Optics, 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), p. 432.

Pechstedt, R. D.

Posey, R.

R. Posey, G. A. Johnson, and S. T. Vohra, Electron. Lett. 36, 1688 (2000).
[Crossref]

Potapov, V. T.

Rathod, R.

Shatalin, S. V.

Shimizu, K.

K. Shimizu, T. Horiguchi, and Y. Koyamada, J. Lightwave Technol. 10, 982 (1992).
[Crossref]

Vohra, S. T.

R. Posey, G. A. Johnson, and S. T. Vohra, Electron. Lett. 36, 1688 (2000).
[Crossref]

Wait, P. C.

P. C. Wait and T. P. Newson, Opt. Commun. 131, 285 (1996).
[Crossref]

Webb, D. J.

Electron. Lett. (1)

R. Posey, G. A. Johnson, and S. T. Vohra, Electron. Lett. 36, 1688 (2000).
[Crossref]

J. Lightwave Technol. (1)

K. Shimizu, T. Horiguchi, and Y. Koyamada, J. Lightwave Technol. 10, 982 (1992).
[Crossref]

Opt. Commun. (1)

P. C. Wait and T. P. Newson, Opt. Commun. 131, 285 (1996).
[Crossref]

Opt. Lett. (2)

Other (2)

H. H. Kee, G. P. Lees, and T. P. Newson, in Digest of Conference on Lasers and Electro-Optics, 2000 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 2000), p. 432.

J. W. Goodman, in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, New York, 1975), Chap.  2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Idealized statistical model of Rayleigh scattering in a single-mode optical fiber. M identical spherical scattering sites are located on the optical axes at positions ξm, which are random variables characterized by a uniform probability density function within scattering length Lsc centered at position z0 in the fiber.

Fig. 2
Fig. 2

Experimental setup: A single-frequency Nd:YAG laser at 1.3 μm is used as the light source. The frequency is thermally tuned and controlled by the voltage generator. An electro-optic (EO) modulator cuts out a pulse of width τw, which is launched down an isolated length of fiber. The backscattered light is directed to the photodetector by the circulator and measured at time t0 by the sample-and-hold electronics and stored on the digital oscilloscope as a function of time as the laser frequency is swept.

Fig. 3
Fig. 3

Example of a Rayleigh backscatter signature as a function of time (and therefore frequency) from a sequence of 50-ns pulses with a repetition rate of approximately 1 μs. Also shown is the ramp voltage applied to the frequency control. Note the turnaround point, where the laser frequency change reverse direction after a thermal time lag with respect to the applied voltage.

Fig. 4
Fig. 4

Measured average autocorrelation function CΔν as a function of optical frequency difference for the 20- and 50-ns pulses (solid curves). The dashed curves show the calculated result given by Eq.  (4). The inset shows deviations from the calculated correlation frequencies Δνc for all five pulse widths.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Et0=aE0exp2iknz01Mmexp2iknξm,
CΔk=ΔIk1ΔIk2ΔIk12ΔIk221/2,
γEΔk=Ek1*Ek2Ek12Ek221/2.
CΔk=sinΔknLsc2ΔknLsc2.
Δνc=1/τw.

Metrics