Abstract

We describe a new imaging method that uses single-cycle pulses of terahertz (THz) radiation. This technique emulates data-collection and image-processing procedures developed for geophysical prospecting and is made possible by the availability of fiber-coupled THz receiver antennas. We use a simple migration procedure to solve the inverse problem; this permits us to reconstruct the location and shape of targets. These results demonstrate the feasibility of the THz system as a test-bed for the exploration of new seismic processing methods involving complex model systems.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Sullivan, Microwave Radar: Imaging and Advanced Concepts (Artech House, Norwood, Mass., 2000).
  2. A. Rihaczek and S. Hershkowitz, Radar Resolution and Complex-Image Analysis (Artech House, Norwood, Mass., 1996).
  3. J. Scales, Theory of Seismic Imaging (Springer-Verlag, Berlin, 1995).
  4. J. Ass’ad, R. Tatham, J. McDonald, T. Kusky, and J. Jech, Geophys. Prospect.41, 323 (1993).
    [CrossRef]
  5. M. Dorbin and C. Savit, Introduction to Geophysical Prospecting, 4th ed. (McGraw-Hill, New York, 1988).
  6. B. B. Hu and M. Nuss, Opt. Lett. 20, 1716 (1995).
    [CrossRef]
  7. D. Mittleman, R. Jacobsen, and M. Nuss, IEEE J. Sel. Top. Quantum Electron. 2, 679 (1996).
    [CrossRef]
  8. D. Mittleman, S. Hunsche, L. Boivin, and M. Nuss, Opt. Lett. 22, 904 (1997).
    [CrossRef] [PubMed]
  9. R. Cheville, R. McGowan, and D. Grischkowsky, Phys. Rev. Lett. 80, 269 (1998).
    [CrossRef]
  10. R. McGowan, R. Cheville, and D. Grischkowsky, IEEE Trans. Microwave Theory Tech. 48, 417 (2000).
    [CrossRef]
  11. J. Johnson, T. Dorney, and D. Mittleman, Appl. Phys. Lett. 78, 835 (2001).
    [CrossRef]
  12. A. Ruffin, J. Decker, L. Sanchez-Palencia, L. LeHors, J. Whitaker, T. Norris, and J. Rudd, Opt. Lett. 26, 681 (2001).
    [CrossRef]
  13. J. Johnson, J. Rudd, and D. Mittleman, Opt. Lett. 25, 1556 (2000).
    [CrossRef]
  14. P. Zhao, N. Uren, F. Wenzel, P. Hatherly, and J. McDonald, Geophysics 63, 2072 (1998).
    [CrossRef]

2001 (2)

2000 (2)

J. Johnson, J. Rudd, and D. Mittleman, Opt. Lett. 25, 1556 (2000).
[CrossRef]

R. McGowan, R. Cheville, and D. Grischkowsky, IEEE Trans. Microwave Theory Tech. 48, 417 (2000).
[CrossRef]

1998 (2)

P. Zhao, N. Uren, F. Wenzel, P. Hatherly, and J. McDonald, Geophysics 63, 2072 (1998).
[CrossRef]

R. Cheville, R. McGowan, and D. Grischkowsky, Phys. Rev. Lett. 80, 269 (1998).
[CrossRef]

1997 (1)

1996 (1)

D. Mittleman, R. Jacobsen, and M. Nuss, IEEE J. Sel. Top. Quantum Electron. 2, 679 (1996).
[CrossRef]

1995 (1)

Ass’ad, J.

J. Ass’ad, R. Tatham, J. McDonald, T. Kusky, and J. Jech, Geophys. Prospect.41, 323 (1993).
[CrossRef]

Boivin, L.

Cheville, R.

R. McGowan, R. Cheville, and D. Grischkowsky, IEEE Trans. Microwave Theory Tech. 48, 417 (2000).
[CrossRef]

R. Cheville, R. McGowan, and D. Grischkowsky, Phys. Rev. Lett. 80, 269 (1998).
[CrossRef]

Decker, J.

Dorbin, M.

M. Dorbin and C. Savit, Introduction to Geophysical Prospecting, 4th ed. (McGraw-Hill, New York, 1988).

Dorney, T.

J. Johnson, T. Dorney, and D. Mittleman, Appl. Phys. Lett. 78, 835 (2001).
[CrossRef]

Grischkowsky, D.

R. McGowan, R. Cheville, and D. Grischkowsky, IEEE Trans. Microwave Theory Tech. 48, 417 (2000).
[CrossRef]

R. Cheville, R. McGowan, and D. Grischkowsky, Phys. Rev. Lett. 80, 269 (1998).
[CrossRef]

Hatherly, P.

P. Zhao, N. Uren, F. Wenzel, P. Hatherly, and J. McDonald, Geophysics 63, 2072 (1998).
[CrossRef]

Hershkowitz, S.

A. Rihaczek and S. Hershkowitz, Radar Resolution and Complex-Image Analysis (Artech House, Norwood, Mass., 1996).

Hu, B. B.

Hunsche, S.

Jacobsen, R.

D. Mittleman, R. Jacobsen, and M. Nuss, IEEE J. Sel. Top. Quantum Electron. 2, 679 (1996).
[CrossRef]

Jech, J.

J. Ass’ad, R. Tatham, J. McDonald, T. Kusky, and J. Jech, Geophys. Prospect.41, 323 (1993).
[CrossRef]

Johnson, J.

J. Johnson, T. Dorney, and D. Mittleman, Appl. Phys. Lett. 78, 835 (2001).
[CrossRef]

J. Johnson, J. Rudd, and D. Mittleman, Opt. Lett. 25, 1556 (2000).
[CrossRef]

Kusky, T.

J. Ass’ad, R. Tatham, J. McDonald, T. Kusky, and J. Jech, Geophys. Prospect.41, 323 (1993).
[CrossRef]

LeHors, L.

McDonald, J.

P. Zhao, N. Uren, F. Wenzel, P. Hatherly, and J. McDonald, Geophysics 63, 2072 (1998).
[CrossRef]

J. Ass’ad, R. Tatham, J. McDonald, T. Kusky, and J. Jech, Geophys. Prospect.41, 323 (1993).
[CrossRef]

McGowan, R.

R. McGowan, R. Cheville, and D. Grischkowsky, IEEE Trans. Microwave Theory Tech. 48, 417 (2000).
[CrossRef]

R. Cheville, R. McGowan, and D. Grischkowsky, Phys. Rev. Lett. 80, 269 (1998).
[CrossRef]

Mittleman, D.

J. Johnson, T. Dorney, and D. Mittleman, Appl. Phys. Lett. 78, 835 (2001).
[CrossRef]

J. Johnson, J. Rudd, and D. Mittleman, Opt. Lett. 25, 1556 (2000).
[CrossRef]

D. Mittleman, S. Hunsche, L. Boivin, and M. Nuss, Opt. Lett. 22, 904 (1997).
[CrossRef] [PubMed]

D. Mittleman, R. Jacobsen, and M. Nuss, IEEE J. Sel. Top. Quantum Electron. 2, 679 (1996).
[CrossRef]

Norris, T.

Nuss, M.

Rihaczek, A.

A. Rihaczek and S. Hershkowitz, Radar Resolution and Complex-Image Analysis (Artech House, Norwood, Mass., 1996).

Rudd, J.

Ruffin, A.

Sanchez-Palencia, L.

Savit, C.

M. Dorbin and C. Savit, Introduction to Geophysical Prospecting, 4th ed. (McGraw-Hill, New York, 1988).

Scales, J.

J. Scales, Theory of Seismic Imaging (Springer-Verlag, Berlin, 1995).

Sullivan, R.

R. Sullivan, Microwave Radar: Imaging and Advanced Concepts (Artech House, Norwood, Mass., 2000).

Tatham, R.

J. Ass’ad, R. Tatham, J. McDonald, T. Kusky, and J. Jech, Geophys. Prospect.41, 323 (1993).
[CrossRef]

Uren, N.

P. Zhao, N. Uren, F. Wenzel, P. Hatherly, and J. McDonald, Geophysics 63, 2072 (1998).
[CrossRef]

Wenzel, F.

P. Zhao, N. Uren, F. Wenzel, P. Hatherly, and J. McDonald, Geophysics 63, 2072 (1998).
[CrossRef]

Whitaker, J.

Zhao, P.

P. Zhao, N. Uren, F. Wenzel, P. Hatherly, and J. McDonald, Geophysics 63, 2072 (1998).
[CrossRef]

Appl. Phys. Lett. (1)

J. Johnson, T. Dorney, and D. Mittleman, Appl. Phys. Lett. 78, 835 (2001).
[CrossRef]

Geophysics (1)

P. Zhao, N. Uren, F. Wenzel, P. Hatherly, and J. McDonald, Geophysics 63, 2072 (1998).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

D. Mittleman, R. Jacobsen, and M. Nuss, IEEE J. Sel. Top. Quantum Electron. 2, 679 (1996).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

R. McGowan, R. Cheville, and D. Grischkowsky, IEEE Trans. Microwave Theory Tech. 48, 417 (2000).
[CrossRef]

Opt. Lett. (4)

Phys. Rev. Lett. (1)

R. Cheville, R. McGowan, and D. Grischkowsky, Phys. Rev. Lett. 80, 269 (1998).
[CrossRef]

Other (5)

R. Sullivan, Microwave Radar: Imaging and Advanced Concepts (Artech House, Norwood, Mass., 2000).

A. Rihaczek and S. Hershkowitz, Radar Resolution and Complex-Image Analysis (Artech House, Norwood, Mass., 1996).

J. Scales, Theory of Seismic Imaging (Springer-Verlag, Berlin, 1995).

J. Ass’ad, R. Tatham, J. McDonald, T. Kusky, and J. Jech, Geophys. Prospect.41, 323 (1993).
[CrossRef]

M. Dorbin and C. Savit, Introduction to Geophysical Prospecting, 4th ed. (McGraw-Hill, New York, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Schematic of the experimental arrangement emulated by the THz setup. A single transmitter and multiple, symmetrically placed receivers are arranged to collect a series of reflected waveforms from a point scatterer. The travel time increases hyperbolically with the transmitter-to-receiver separation. (b) Kirchhoff migration reconstructs the location and shape of a reflector by calculating the appropriate hyperbola and summing the values of the recorded traces along that hyperbola for an array of guessed locations. Incorrect locations generate a small summation since their hyperbolas do not pass through many reflected pulses. Two such incorrect guesses and their corresponding hyperbolas are shown.

Fig. 2
Fig. 2

Measured pulse travel times versus the receiver offset from cylindrical metal targets with diameters as shown. The difference in the curvature of the hyperbolas is very small, yet the difference in the reconstructed images is dramatic (see Fig.  3). The hyperbolas are shifted in time because of the slight variation in transmitter-to-target distances.

Fig. 3
Fig. 3

Kirchhoff migration images from four data sets. The targets are metal cylinders with diameters of (a) 2.4  mm, (b) 4.7  mm, (c) 6.2  mm, and (d) 12.7  mm. The dashed circle and curves represent the outlines of the targets, for comparison with the migration images. In (a), the object is correctly located, but its surface curvature cannot be resolved since its diameter is less than the resolution. In (b) and especially in (c) and (d), both the location of the object and its surface curvature are resolved. The reconstruction of the cylindrical surface is limited by the finite range of receiver offsets.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Dx=cτ=x02+z021/2+x-x02+z021/2,

Metrics