Abstract

We describe a new imaging technique based on modification of laser relaxation frequency induced by coherent optical feedback from an external target. A direct comparison (both theoretical and experimental) is made with laser feedback interferometry techniques, in which there is a modification of the laser’s steady state. We show that, for a laser with a cavity damping rate γc higher than the population damping rate, γ1, the modification of the laser relaxation frequency can be several orders of magnitude more sensitive than the perturbation of the laser’s output power. Application of this technique to imaging is reported.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Lang and K. Kobayashi, IEEE J. Quantum Electron. QE-16, 347 (1980).
    [CrossRef]
  2. A. Bearden, M. P. O'Neil, L. C. Osborne, and T. L. Wong, Opt. Lett. 18, 238 (1993).
    [CrossRef]
  3. D. Huang, J. Wang, C. P. Lin, J. S. Shuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
    [CrossRef] [PubMed]
  4. E. Lacot, R. Day, and F. Stoeckel, Opt. Lett. 24, 744 (1999).
    [CrossRef]
  5. D. A. Kleinman, Bell. Syst. Tech. J. 43, 1505 (1964).
    [CrossRef]
  6. K. Otsuka, Jpn. J. Appl. Phys. 31, L1546 (1992).
    [CrossRef]
  7. J. J. Zayhowsji and A. Mooradian, Opt. Lett. 14, 24 (1989).
    [CrossRef]
  8. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).
  9. E. Lacot, R. Day, and F. Stoeckel, “Coherent laser detection by frequency-shifted optical feedback,” Phys. Rev. A (to be published).

1999

1993

1992

K. Otsuka, Jpn. J. Appl. Phys. 31, L1546 (1992).
[CrossRef]

1991

D. Huang, J. Wang, C. P. Lin, J. S. Shuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

1989

1980

R. Lang and K. Kobayashi, IEEE J. Quantum Electron. QE-16, 347 (1980).
[CrossRef]

1964

D. A. Kleinman, Bell. Syst. Tech. J. 43, 1505 (1964).
[CrossRef]

Bearden, A.

Chang, W.

D. Huang, J. Wang, C. P. Lin, J. S. Shuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Day, R.

E. Lacot, R. Day, and F. Stoeckel, Opt. Lett. 24, 744 (1999).
[CrossRef]

E. Lacot, R. Day, and F. Stoeckel, “Coherent laser detection by frequency-shifted optical feedback,” Phys. Rev. A (to be published).

Flotte, T.

D. Huang, J. Wang, C. P. Lin, J. S. Shuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

D. Huang, J. Wang, C. P. Lin, J. S. Shuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Gregory, K.

D. Huang, J. Wang, C. P. Lin, J. S. Shuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Hee, M. R.

D. Huang, J. Wang, C. P. Lin, J. S. Shuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Huang, D.

D. Huang, J. Wang, C. P. Lin, J. S. Shuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Kleinman, D. A.

D. A. Kleinman, Bell. Syst. Tech. J. 43, 1505 (1964).
[CrossRef]

Kobayashi, K.

R. Lang and K. Kobayashi, IEEE J. Quantum Electron. QE-16, 347 (1980).
[CrossRef]

Lacot, E.

E. Lacot, R. Day, and F. Stoeckel, Opt. Lett. 24, 744 (1999).
[CrossRef]

E. Lacot, R. Day, and F. Stoeckel, “Coherent laser detection by frequency-shifted optical feedback,” Phys. Rev. A (to be published).

Lang, R.

R. Lang and K. Kobayashi, IEEE J. Quantum Electron. QE-16, 347 (1980).
[CrossRef]

Lin, C. P.

D. Huang, J. Wang, C. P. Lin, J. S. Shuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Mooradian, A.

O'Neil, M. P.

Osborne, L. C.

Otsuka, K.

K. Otsuka, Jpn. J. Appl. Phys. 31, L1546 (1992).
[CrossRef]

Puliafito, C. A.

D. Huang, J. Wang, C. P. Lin, J. S. Shuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Shuman, J. S.

D. Huang, J. Wang, C. P. Lin, J. S. Shuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Siegman, A. E.

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).

Stinson, W. G.

D. Huang, J. Wang, C. P. Lin, J. S. Shuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Stoeckel, F.

E. Lacot, R. Day, and F. Stoeckel, Opt. Lett. 24, 744 (1999).
[CrossRef]

E. Lacot, R. Day, and F. Stoeckel, “Coherent laser detection by frequency-shifted optical feedback,” Phys. Rev. A (to be published).

Wang, J.

D. Huang, J. Wang, C. P. Lin, J. S. Shuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Wong, T. L.

Zayhowsji, J. J.

Bell. Syst. Tech. J.

D. A. Kleinman, Bell. Syst. Tech. J. 43, 1505 (1964).
[CrossRef]

IEEE J. Quantum Electron.

R. Lang and K. Kobayashi, IEEE J. Quantum Electron. QE-16, 347 (1980).
[CrossRef]

Jpn. J. Appl. Phys.

K. Otsuka, Jpn. J. Appl. Phys. 31, L1546 (1992).
[CrossRef]

Opt. Lett.

Phys. Rev. A

E. Lacot, R. Day, and F. Stoeckel, “Coherent laser detection by frequency-shifted optical feedback,” Phys. Rev. A (to be published).

Science

D. Huang, J. Wang, C. P. Lin, J. S. Shuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, Science 254, 1178 (1991).
[CrossRef] [PubMed]

Other

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental (symbols) and theoretical (dotted lines) evolution of the relative modification of the laser output power, 1/ReffΔIs/Is , and of the laser relaxation frequency, 1/ReffΔΩR/ΩR versus the feedback distance, d. Experimental conditions: laser cavity damping rate, γc=1.55×1010 s-1; pumping parameter, η=2; effective feedback reflectivity, Reff10-4.

Fig. 2
Fig. 2

Experimental (symbols) and theoretical (dotted curve) evolution of the normalized relaxation-frequency shift, ΔΩR/δΩR=ΩR,f-ΩR/δΩR, versus the effective feedback reflectivity, Reff, where δΩR=γ1η6 kHz is the relaxation-frequency width. The theoretical curve is obtained from Eq.  (5) with the following parameters: pump parameter, η=1.5; population-inversion damping rate, γ1=1/255 μs; cavity damping rate, γc=1.55×1010 s-1; feedback time delay, τ=2×10-8 s d=3.1 m, and a constructive interference condition, cosωs,fτ=1.

Fig. 3
Fig. 3

Two-dimensional 262×262 pixels LROFI image of a French 1-franc piece. The pixel dimensions are 100 μm×100 μm. With an optical density of 2, the effective reflectivity is of the order of 10-7.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

dNtdt=γN0-N-BNEc2t,dEctdt=12BN-γcEct+γextEct-τcosΦct-τ-Φct-ωτ,dΦctdt=ωc-ω+γextEct-τEct×sinΦct-τ-Φct-ωτ.
Ns,f=Ns1-2Reffcosωs,fτ,Is,f=Es,f2=Is1+2/η-1Reffcosωs,fτ1-2Reffcosωs,fτ,ωs,f=ωs-γcReffsinωs,fτ,
Pλ=λ+γ1η1-2Reffcosωs,fτ×λ2+2γcReffcosωs,fτ×1-exp-λτλ+γcReff21-exp-λτ2+ΩR21+2η-1Reffcosωs,fτ×λ+γcReffcosωs,fτ1-exp-λτ,
λ1=0,  λ2,3=-γ1,f2±iΩR,f,
γ1,f=γ11-2Reffcosωs,fτ,
ΩR,f2=ΩR21+2η-1Reffcosωs,fτ×1+γcτReffcosωs,fτ1+2γcReffcosωs,fτ+γcτReff2.
ΔΩRΩR=ΩR,f-ΩRΩR=122η-1Reff-γcτReff.
ΔIsIs=Is,f-IsIs=2ηη-1Reff.
Reffmin=4η2η-1γ1γc1γcτ2.

Metrics