Abstract

Alloy–ceramic oxide multilayers of Ni80Nb20MgO with 3.56-nm period have been made by use of the pulsed-laser deposition technique and characterized by means of grazing-incidence x-ray reflectivity. The interface roughness was found to be only 0.35 nm at the two interfaces, Ni80Nb20MgO and MgONi80Nb20, leading to a peak reflectivity of 38% at the first order. The atomic structure in the two individual layers, Ni80Nb20 and MgO, is found to be amorphous, in agreement with the deposition conditions. These multilayers can be used as mirrors for soft x rays in the angular range 18° to 39°, depending on the actual wavelength of radiation in the water-window region.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Vitta, Curr. Sci. 73, 429 (1997).
  2. J. Kirz, C. Jacobsen, and M. Howells, Q. Rev. Biophys. 28, 33 (1995).
    [CrossRef] [PubMed]
  3. S. Vitta, T. H. Metzger, and J. Peisl, Appl. Opt. 36, 1472 (1997).
    [PubMed]
  4. F. Schafers, H.-C. Mertins, F. Schmolla, I. Packe, N. N. Salashchenko, and E. A. Shamov, Appl. Opt. 37, 719 (1998).
  5. N. N. Salashchenko, Y. Y. Platonov, and S. Y. Zuev, Nucl. Instrum. Methods Phys. Res. A 359, 114 (1995).
  6. F. E. Christensen, S. Zhu, A. Hornstrup, H. W. Schnopper, P. Plag, and J. Wood, J. X-Ray Sci. Technol. 3, 1 (1991).
  7. F. Sommer, T. Lang, and B. Predel, Z. Metallk. 78, 649 (1987).
  8. H. U. Krebs, J. Non-Equilibrium Proc. 10, 3 (1997).
  9. L. Nevot and P. Croce, Rev. Phys. Appl. 15, 761 (1980).
  10. J. Wollschlager, J. Viernow, C. Tegenkamp, D. Erdos, K. M. Schroder, and H. Pfnur, Appl. Surf. Sci. 142, 129 (1999).
  11. S. A. Chambers, Y. Gao, and Y. Liang, Surf. Sci. 339, 297 (1995).
    [CrossRef]
  12. D. L. Windt, Comput. Phys. 12, 360 (1998).
    [CrossRef]

1999 (1)

J. Wollschlager, J. Viernow, C. Tegenkamp, D. Erdos, K. M. Schroder, and H. Pfnur, Appl. Surf. Sci. 142, 129 (1999).

1998 (2)

1997 (3)

S. Vitta, T. H. Metzger, and J. Peisl, Appl. Opt. 36, 1472 (1997).
[PubMed]

S. Vitta, Curr. Sci. 73, 429 (1997).

H. U. Krebs, J. Non-Equilibrium Proc. 10, 3 (1997).

1995 (3)

N. N. Salashchenko, Y. Y. Platonov, and S. Y. Zuev, Nucl. Instrum. Methods Phys. Res. A 359, 114 (1995).

J. Kirz, C. Jacobsen, and M. Howells, Q. Rev. Biophys. 28, 33 (1995).
[CrossRef] [PubMed]

S. A. Chambers, Y. Gao, and Y. Liang, Surf. Sci. 339, 297 (1995).
[CrossRef]

1991 (1)

F. E. Christensen, S. Zhu, A. Hornstrup, H. W. Schnopper, P. Plag, and J. Wood, J. X-Ray Sci. Technol. 3, 1 (1991).

1987 (1)

F. Sommer, T. Lang, and B. Predel, Z. Metallk. 78, 649 (1987).

1980 (1)

L. Nevot and P. Croce, Rev. Phys. Appl. 15, 761 (1980).

Chambers, S. A.

S. A. Chambers, Y. Gao, and Y. Liang, Surf. Sci. 339, 297 (1995).
[CrossRef]

Christensen, F. E.

F. E. Christensen, S. Zhu, A. Hornstrup, H. W. Schnopper, P. Plag, and J. Wood, J. X-Ray Sci. Technol. 3, 1 (1991).

Croce, P.

L. Nevot and P. Croce, Rev. Phys. Appl. 15, 761 (1980).

Erdos, D.

J. Wollschlager, J. Viernow, C. Tegenkamp, D. Erdos, K. M. Schroder, and H. Pfnur, Appl. Surf. Sci. 142, 129 (1999).

Gao, Y.

S. A. Chambers, Y. Gao, and Y. Liang, Surf. Sci. 339, 297 (1995).
[CrossRef]

Hornstrup, A.

F. E. Christensen, S. Zhu, A. Hornstrup, H. W. Schnopper, P. Plag, and J. Wood, J. X-Ray Sci. Technol. 3, 1 (1991).

Howells, M.

J. Kirz, C. Jacobsen, and M. Howells, Q. Rev. Biophys. 28, 33 (1995).
[CrossRef] [PubMed]

Jacobsen, C.

J. Kirz, C. Jacobsen, and M. Howells, Q. Rev. Biophys. 28, 33 (1995).
[CrossRef] [PubMed]

Kirz, J.

J. Kirz, C. Jacobsen, and M. Howells, Q. Rev. Biophys. 28, 33 (1995).
[CrossRef] [PubMed]

Krebs, H. U.

H. U. Krebs, J. Non-Equilibrium Proc. 10, 3 (1997).

Lang, T.

F. Sommer, T. Lang, and B. Predel, Z. Metallk. 78, 649 (1987).

Liang, Y.

S. A. Chambers, Y. Gao, and Y. Liang, Surf. Sci. 339, 297 (1995).
[CrossRef]

Mertins, H.-C.

Metzger, T. H.

Nevot, L.

L. Nevot and P. Croce, Rev. Phys. Appl. 15, 761 (1980).

Packe, I.

Peisl, J.

Pfnur, H.

J. Wollschlager, J. Viernow, C. Tegenkamp, D. Erdos, K. M. Schroder, and H. Pfnur, Appl. Surf. Sci. 142, 129 (1999).

Plag, P.

F. E. Christensen, S. Zhu, A. Hornstrup, H. W. Schnopper, P. Plag, and J. Wood, J. X-Ray Sci. Technol. 3, 1 (1991).

Platonov, Y. Y.

N. N. Salashchenko, Y. Y. Platonov, and S. Y. Zuev, Nucl. Instrum. Methods Phys. Res. A 359, 114 (1995).

Predel, B.

F. Sommer, T. Lang, and B. Predel, Z. Metallk. 78, 649 (1987).

Salashchenko, N. N.

F. Schafers, H.-C. Mertins, F. Schmolla, I. Packe, N. N. Salashchenko, and E. A. Shamov, Appl. Opt. 37, 719 (1998).

N. N. Salashchenko, Y. Y. Platonov, and S. Y. Zuev, Nucl. Instrum. Methods Phys. Res. A 359, 114 (1995).

Schafers, F.

Schmolla, F.

Schnopper, H. W.

F. E. Christensen, S. Zhu, A. Hornstrup, H. W. Schnopper, P. Plag, and J. Wood, J. X-Ray Sci. Technol. 3, 1 (1991).

Schroder, K. M.

J. Wollschlager, J. Viernow, C. Tegenkamp, D. Erdos, K. M. Schroder, and H. Pfnur, Appl. Surf. Sci. 142, 129 (1999).

Shamov, E. A.

Sommer, F.

F. Sommer, T. Lang, and B. Predel, Z. Metallk. 78, 649 (1987).

Tegenkamp, C.

J. Wollschlager, J. Viernow, C. Tegenkamp, D. Erdos, K. M. Schroder, and H. Pfnur, Appl. Surf. Sci. 142, 129 (1999).

Viernow, J.

J. Wollschlager, J. Viernow, C. Tegenkamp, D. Erdos, K. M. Schroder, and H. Pfnur, Appl. Surf. Sci. 142, 129 (1999).

Vitta, S.

Windt, D. L.

D. L. Windt, Comput. Phys. 12, 360 (1998).
[CrossRef]

Wollschlager, J.

J. Wollschlager, J. Viernow, C. Tegenkamp, D. Erdos, K. M. Schroder, and H. Pfnur, Appl. Surf. Sci. 142, 129 (1999).

Wood, J.

F. E. Christensen, S. Zhu, A. Hornstrup, H. W. Schnopper, P. Plag, and J. Wood, J. X-Ray Sci. Technol. 3, 1 (1991).

Zhu, S.

F. E. Christensen, S. Zhu, A. Hornstrup, H. W. Schnopper, P. Plag, and J. Wood, J. X-Ray Sci. Technol. 3, 1 (1991).

Zuev, S. Y.

N. N. Salashchenko, Y. Y. Platonov, and S. Y. Zuev, Nucl. Instrum. Methods Phys. Res. A 359, 114 (1995).

Appl. Opt. (2)

Appl. Surf. Sci. (1)

J. Wollschlager, J. Viernow, C. Tegenkamp, D. Erdos, K. M. Schroder, and H. Pfnur, Appl. Surf. Sci. 142, 129 (1999).

Comput. Phys. (1)

D. L. Windt, Comput. Phys. 12, 360 (1998).
[CrossRef]

Curr. Sci. (1)

S. Vitta, Curr. Sci. 73, 429 (1997).

J. Non-Equilibrium Proc. (1)

H. U. Krebs, J. Non-Equilibrium Proc. 10, 3 (1997).

J. X-Ray Sci. Technol. (1)

F. E. Christensen, S. Zhu, A. Hornstrup, H. W. Schnopper, P. Plag, and J. Wood, J. X-Ray Sci. Technol. 3, 1 (1991).

Nucl. Instrum. Methods Phys. Res. A (1)

N. N. Salashchenko, Y. Y. Platonov, and S. Y. Zuev, Nucl. Instrum. Methods Phys. Res. A 359, 114 (1995).

Q. Rev. Biophys. (1)

J. Kirz, C. Jacobsen, and M. Howells, Q. Rev. Biophys. 28, 33 (1995).
[CrossRef] [PubMed]

Rev. Phys. Appl. (1)

L. Nevot and P. Croce, Rev. Phys. Appl. 15, 761 (1980).

Surf. Sci. (1)

S. A. Chambers, Y. Gao, and Y. Liang, Surf. Sci. 339, 297 (1995).
[CrossRef]

Z. Metallk. (1)

F. Sommer, T. Lang, and B. Predel, Z. Metallk. 78, 649 (1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

θ2θ reflectivity scan (open circles) from the Ni80Nb201.7 nmMgO1.8 nm×40 multilayer, showing a clear first-order peak with a peak reflectivity of 38%. The individual layer thickness was determined by modeling of the reflectivity. The ideal reflectivity for this multilayer with no interface roughness or layer-thickness variations is shown by the dashed curve, and the reflectivity from the multilayer with interface roughness and layer-thickness variations is shown by the solid curve. The ideal reflectivity curve has been vertically shifted for clarity.

Fig. 2
Fig. 2

Transverse scans performed at different 2θ positions, showing significant diffuse scattering from the multilayers away from the central specular position. Curve (c) is at the first-order peak position, and curves (a) and (b) are before the first-order peak at 2.24° and 2.6° 2θ, respectively.

Fig. 3
Fig. 3

High-angle x-ray diffraction pattern from the Ni80Nb20 1.7 nmMgO1.8 nm multilayer with a single broad peak, indicating that both Ni80Nb20 and MgO are amorphous in the as-deposited condition. The expected peak positions for Ni, Nb, and MgO are also shown for comparison.

Tables (1)

Tables Icon

Table 1 Ni80Nb20-MgO Multilayer Parameters Used for Modeling the Reflectivity, R a

Metrics