Abstract

We demonstrate a frequency-resolved optical gating (FROG) device that uses a sweepshot geometry that combines the advantages of multishot and single-shot pulse-measurement devices, has only one moving part, a galvanometer, and requires no computer control. Like a multishot device, it focuses the beam to a small spot (rather than a line focus) and has a high intensity in the nonlinear medium. Like single-shot devices, it makes measurements quickly, generating an entire FROG trace on a single camera screen (rather than requiring many camera downloads).

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, and D. J. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
    [CrossRef]
  2. D. Reid, C. McGowan, W. E. Sleat, and W. Sibbet, Appl. Opt. 36, 9103 (1997).
    [CrossRef]
  3. Femtosecond Technologies, 3686 Virden Avenue, Oakland, Calif. 94619; fsoft@wco.com.
  4. D. J. Kane, IEEE J. Quantum Electron. 35, 421 (1999).
    [CrossRef]

1999

D. J. Kane, IEEE J. Quantum Electron. 35, 421 (1999).
[CrossRef]

1997

D. Reid, C. McGowan, W. E. Sleat, and W. Sibbet, Appl. Opt. 36, 9103 (1997).
[CrossRef]

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, and D. J. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

DeLong, K. W.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, and D. J. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

Fittinghoff, D. N.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, and D. J. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

Kane, D. J.

D. J. Kane, IEEE J. Quantum Electron. 35, 421 (1999).
[CrossRef]

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, and D. J. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

Krumbügel, M. A.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, and D. J. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

McGowan, C.

Reid, D.

Sibbet, W.

Sleat, W. E.

Sweetser, J. N.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, and D. J. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

Trebino, R.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, and D. J. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

Appl. Opt.

IEEE J. Quantum Electron.

D. J. Kane, IEEE J. Quantum Electron. 35, 421 (1999).
[CrossRef]

Rev. Sci. Instrum.

R. Trebino, K. W. DeLong, D. N. Fittinghoff, J. N. Sweetser, M. A. Krumbügel, and D. J. Kane, Rev. Sci. Instrum. 68, 3277 (1997).
[CrossRef]

Other

Femtosecond Technologies, 3686 Virden Avenue, Oakland, Calif. 94619; fsoft@wco.com.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Two versions of FROG devices: (a) multishot FROG, (b) single-shot FROG. (c) Magnified view of the beam-crossing region in the nonlinear crystal (NLC). CC’s, corner cubes; BSs, beam splitters; L, focusing lens; Ms, turning mirrors; Fs, filters; CL, cylindrical lens.

Fig. 2
Fig. 2

Layout of the Sweepshot FROG. The lens focuses the input beam onto the nonlinear crystal, and a galvanometer mirror, G, scans the foci of both beams within the crystal. The inset shows the scan geometry inside the crystal. The light gray beam represents the beam at zero delay; the dark gray beam is at a delay caused by a rotation of G through an angle ϕ.

Fig. 3
Fig. 3

Comparison between Sweepshot and multishot FROG measurements of test pulses: (a) measured and (b) retrieved Sweepshot traces for a chirped pulse; (c) measured and (d) retrieved multishot FROG traces for the same chirped pulse: (e), (f) retrieved intensities (solid curves) and phases (dashed curves) for the (e) time and (f) frequency domains; (g)–(l) same as (a)–(f) but for a more complicated double-chirped pulse consisting of two chirped pulses.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

d=2Rsinθ/22-2cosϕ1/2,
Δt=d/c=2Rsinθ/22-2cosϕ1/2/cRϕθ/cθx/c,

Metrics