Abstract

We present a reliable, narrow-linewidth (100-kHz) continous-wave optical parametric oscillator (OPO) suitable for high-resolution spectroscopy applications. The singly resonant OPO with a resonated pump is based on periodically poled lithium niobate crystal and features a specially designed intracavity etalon, which permits precise tuning to any desired wavelength in a wide range. We demonstrate Doppler-free spectroscopy of a rovibrational transition of methane at 3.39 μm.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Schneider, P. Kramper, S. Schiller, and J. Mlynek, Opt. Lett. 22, 1293 (1997).
  2. K. Schneider and S. Schiller, Appl. Phys. B 65, 775 (1997).
  3. U. Strössner, A. Peters, J. Mlynek, S. Schiller, J.-P. Meyn, and R. Wallenstein, Opt. Lett. 24, 1602 (1999).
  4. D. R. Weise, U. Strössner, A. Peters, J. Mlynek, S. Schiller, A. Arie, and G. Rosenman, Opt. Commun. 184, 329 (2000).
  5. K. Schneider, P. Kramper, O. Mor, S. Schiller, and J. Mlynek, in Advanced Solid State Lasers, W. R. Bosenberg and M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), p. 256.
  6. P. E. Powers, T. J. Kulp, and S. E. Bisson, Opt. Lett. 23, 159 (1998).
  7. M. E. Klein, C. K. Laue, D.-H. Lee, K.-J. Boller, and R. Wallenstein, Opt. Lett. 25, 490 (2000).
  8. F. Kühnemann, K. Schneider, A. Hecker, A. A. E. Martis, W. Urban, S. Schiller, and J. Mlynek, Appl. Phys. B 66, 741 (1998).
  9. G. M. Gibson, M. H. Dunn, and M. J. Padgett, Opt. Lett. 23, 40 (1998).
  10. G. M. Gibson, M. Ebrahimzadeh, M. J. Padgett, and M. H. Dunn, Opt. Lett. 24, 397 (1999).
  11. W. R. Bosenberg, A. Drobshoff, J. I. Alexander, L. E. Myers, and R. L. Byer, Opt. Lett. 21, 1336 (1996).
    [CrossRef] [PubMed]
  12. S. Schiller, K. Schneider, and J. Mlynek, J. Opt. Soc. Am. B 16, 1512 (1999).
    [CrossRef]
  13. M. A. Gubin and E. D. Protsenko, Quantum Electron. 27, 1048 (1997).
    [CrossRef]
  14. J. L. Hall, L. Hollberg, T. Baer, and H. G. Robinson, Appl. Phys. Lett. 39, 680 (1981).
    [CrossRef]

2000 (2)

D. R. Weise, U. Strössner, A. Peters, J. Mlynek, S. Schiller, A. Arie, and G. Rosenman, Opt. Commun. 184, 329 (2000).

M. E. Klein, C. K. Laue, D.-H. Lee, K.-J. Boller, and R. Wallenstein, Opt. Lett. 25, 490 (2000).

1999 (3)

1998 (3)

F. Kühnemann, K. Schneider, A. Hecker, A. A. E. Martis, W. Urban, S. Schiller, and J. Mlynek, Appl. Phys. B 66, 741 (1998).

G. M. Gibson, M. H. Dunn, and M. J. Padgett, Opt. Lett. 23, 40 (1998).

P. E. Powers, T. J. Kulp, and S. E. Bisson, Opt. Lett. 23, 159 (1998).

1997 (3)

K. Schneider, P. Kramper, S. Schiller, and J. Mlynek, Opt. Lett. 22, 1293 (1997).

K. Schneider and S. Schiller, Appl. Phys. B 65, 775 (1997).

M. A. Gubin and E. D. Protsenko, Quantum Electron. 27, 1048 (1997).
[CrossRef]

1996 (1)

1981 (1)

J. L. Hall, L. Hollberg, T. Baer, and H. G. Robinson, Appl. Phys. Lett. 39, 680 (1981).
[CrossRef]

Alexander, J. I.

Arie, A.

D. R. Weise, U. Strössner, A. Peters, J. Mlynek, S. Schiller, A. Arie, and G. Rosenman, Opt. Commun. 184, 329 (2000).

Baer, T.

J. L. Hall, L. Hollberg, T. Baer, and H. G. Robinson, Appl. Phys. Lett. 39, 680 (1981).
[CrossRef]

Bisson, S. E.

Boller, K.-J.

Bosenberg, W. R.

Byer, R. L.

Drobshoff, A.

Dunn, M. H.

Ebrahimzadeh, M.

Gibson, G. M.

Gubin, M. A.

M. A. Gubin and E. D. Protsenko, Quantum Electron. 27, 1048 (1997).
[CrossRef]

Hall, J. L.

J. L. Hall, L. Hollberg, T. Baer, and H. G. Robinson, Appl. Phys. Lett. 39, 680 (1981).
[CrossRef]

Hecker, A.

F. Kühnemann, K. Schneider, A. Hecker, A. A. E. Martis, W. Urban, S. Schiller, and J. Mlynek, Appl. Phys. B 66, 741 (1998).

Hollberg, L.

J. L. Hall, L. Hollberg, T. Baer, and H. G. Robinson, Appl. Phys. Lett. 39, 680 (1981).
[CrossRef]

Klein, M. E.

Kramper, P.

K. Schneider, P. Kramper, S. Schiller, and J. Mlynek, Opt. Lett. 22, 1293 (1997).

K. Schneider, P. Kramper, O. Mor, S. Schiller, and J. Mlynek, in Advanced Solid State Lasers, W. R. Bosenberg and M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), p. 256.

Kühnemann, F.

F. Kühnemann, K. Schneider, A. Hecker, A. A. E. Martis, W. Urban, S. Schiller, and J. Mlynek, Appl. Phys. B 66, 741 (1998).

Kulp, T. J.

Laue, C. K.

Lee, D.-H.

Martis, A. A. E.

F. Kühnemann, K. Schneider, A. Hecker, A. A. E. Martis, W. Urban, S. Schiller, and J. Mlynek, Appl. Phys. B 66, 741 (1998).

Meyn, J.-P.

Mlynek, J.

D. R. Weise, U. Strössner, A. Peters, J. Mlynek, S. Schiller, A. Arie, and G. Rosenman, Opt. Commun. 184, 329 (2000).

U. Strössner, A. Peters, J. Mlynek, S. Schiller, J.-P. Meyn, and R. Wallenstein, Opt. Lett. 24, 1602 (1999).

S. Schiller, K. Schneider, and J. Mlynek, J. Opt. Soc. Am. B 16, 1512 (1999).
[CrossRef]

F. Kühnemann, K. Schneider, A. Hecker, A. A. E. Martis, W. Urban, S. Schiller, and J. Mlynek, Appl. Phys. B 66, 741 (1998).

K. Schneider, P. Kramper, S. Schiller, and J. Mlynek, Opt. Lett. 22, 1293 (1997).

K. Schneider, P. Kramper, O. Mor, S. Schiller, and J. Mlynek, in Advanced Solid State Lasers, W. R. Bosenberg and M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), p. 256.

Mor, O.

K. Schneider, P. Kramper, O. Mor, S. Schiller, and J. Mlynek, in Advanced Solid State Lasers, W. R. Bosenberg and M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), p. 256.

Myers, L. E.

Padgett, M. J.

Peters, A.

D. R. Weise, U. Strössner, A. Peters, J. Mlynek, S. Schiller, A. Arie, and G. Rosenman, Opt. Commun. 184, 329 (2000).

U. Strössner, A. Peters, J. Mlynek, S. Schiller, J.-P. Meyn, and R. Wallenstein, Opt. Lett. 24, 1602 (1999).

Powers, P. E.

Protsenko, E. D.

M. A. Gubin and E. D. Protsenko, Quantum Electron. 27, 1048 (1997).
[CrossRef]

Robinson, H. G.

J. L. Hall, L. Hollberg, T. Baer, and H. G. Robinson, Appl. Phys. Lett. 39, 680 (1981).
[CrossRef]

Rosenman, G.

D. R. Weise, U. Strössner, A. Peters, J. Mlynek, S. Schiller, A. Arie, and G. Rosenman, Opt. Commun. 184, 329 (2000).

Schiller, S.

D. R. Weise, U. Strössner, A. Peters, J. Mlynek, S. Schiller, A. Arie, and G. Rosenman, Opt. Commun. 184, 329 (2000).

U. Strössner, A. Peters, J. Mlynek, S. Schiller, J.-P. Meyn, and R. Wallenstein, Opt. Lett. 24, 1602 (1999).

S. Schiller, K. Schneider, and J. Mlynek, J. Opt. Soc. Am. B 16, 1512 (1999).
[CrossRef]

F. Kühnemann, K. Schneider, A. Hecker, A. A. E. Martis, W. Urban, S. Schiller, and J. Mlynek, Appl. Phys. B 66, 741 (1998).

K. Schneider and S. Schiller, Appl. Phys. B 65, 775 (1997).

K. Schneider, P. Kramper, S. Schiller, and J. Mlynek, Opt. Lett. 22, 1293 (1997).

K. Schneider, P. Kramper, O. Mor, S. Schiller, and J. Mlynek, in Advanced Solid State Lasers, W. R. Bosenberg and M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), p. 256.

Schneider, K.

S. Schiller, K. Schneider, and J. Mlynek, J. Opt. Soc. Am. B 16, 1512 (1999).
[CrossRef]

F. Kühnemann, K. Schneider, A. Hecker, A. A. E. Martis, W. Urban, S. Schiller, and J. Mlynek, Appl. Phys. B 66, 741 (1998).

K. Schneider and S. Schiller, Appl. Phys. B 65, 775 (1997).

K. Schneider, P. Kramper, S. Schiller, and J. Mlynek, Opt. Lett. 22, 1293 (1997).

K. Schneider, P. Kramper, O. Mor, S. Schiller, and J. Mlynek, in Advanced Solid State Lasers, W. R. Bosenberg and M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), p. 256.

Strössner, U.

D. R. Weise, U. Strössner, A. Peters, J. Mlynek, S. Schiller, A. Arie, and G. Rosenman, Opt. Commun. 184, 329 (2000).

U. Strössner, A. Peters, J. Mlynek, S. Schiller, J.-P. Meyn, and R. Wallenstein, Opt. Lett. 24, 1602 (1999).

Urban, W.

F. Kühnemann, K. Schneider, A. Hecker, A. A. E. Martis, W. Urban, S. Schiller, and J. Mlynek, Appl. Phys. B 66, 741 (1998).

Wallenstein, R.

Weise, D. R.

D. R. Weise, U. Strössner, A. Peters, J. Mlynek, S. Schiller, A. Arie, and G. Rosenman, Opt. Commun. 184, 329 (2000).

Appl. Phys. B (2)

K. Schneider and S. Schiller, Appl. Phys. B 65, 775 (1997).

F. Kühnemann, K. Schneider, A. Hecker, A. A. E. Martis, W. Urban, S. Schiller, and J. Mlynek, Appl. Phys. B 66, 741 (1998).

Appl. Phys. Lett. (1)

J. L. Hall, L. Hollberg, T. Baer, and H. G. Robinson, Appl. Phys. Lett. 39, 680 (1981).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

D. R. Weise, U. Strössner, A. Peters, J. Mlynek, S. Schiller, A. Arie, and G. Rosenman, Opt. Commun. 184, 329 (2000).

Opt. Lett. (7)

Quantum Electron. (1)

M. A. Gubin and E. D. Protsenko, Quantum Electron. 27, 1048 (1997).
[CrossRef]

Other (1)

K. Schneider, P. Kramper, O. Mor, S. Schiller, and J. Mlynek, in Advanced Solid State Lasers, W. R. Bosenberg and M. M. Fejer, eds., Vol. 19 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1998), p. 256.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the OPO setup. λ/2, half-wave plate. See text for other abbreviations.

Fig. 2
Fig. 2

Tuning behavior of the OPO idler output (left) without and (right) with ICE. We tuned the OPO by varying the pump frequency.

Fig. 3
Fig. 3

OPO idler output linewidth.

Fig. 4
Fig. 4

Doppler-free spectroscopy setup. One OPO idler output is split into saturating and probe beams and sent through the methane cell. The probe beam is phase modulated by an electro-optic modulator (EOM) at 1.24  MHz (modulation index, 1). The saturating beam is chopped by the acousto-optic modulator (AOM) at 100  kHz. After the cell the probe beam is sent to a fast photodetector, whose output is analyzed by a phase-sensitive detection circuit, and a lock-in amplifier that extracts the spectroscopic signal. The second OPO idler output is used for frequency monitoring by a wavemeter and for frequency locking to a HeNe/CH4 laser. RP1, RP2, Rochon prism polarizers.

Fig. 5
Fig. 5

Doppler-free resonance of methane at 3.39 μm, obtained by scanning of the OPO idler frequency over 5  MHz in 50  s and use of a lock-in time constant of 30  ms. Curve, fit according to a theoretical model.14

Metrics