Abstract

Theoretical and experimental results are presented that illustrate efficient generation of new optical frequencies by means of induced modulational instability in birefringent fibers for an initially highly phase-mismatched process. Modulational instability is assisted by multiple four-wave mixing interactions. This technique relaxes the strict spectral limitations imposed by the phase-matching conditions on the signal used for frequency conversion by means of modulational instability.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Adademic, San Diego, Calif., 1995).
  2. G. Cappellini and S. Trillo, J. Opt. Soc. Am. B 8, 824 (1991).
    [CrossRef]
  3. G. Millot, E. Seve, S. Wabnitz, and S. Trillo, Phys. Rev. Lett. 80, 504 (1998).
    [CrossRef]
  4. E. Seve, G. Millot, and S. Trillo, Phys. Rev. E 61, 3139 (2000).
    [CrossRef]
  5. T. Sylvestre, H. Maillotte, E. Lantz, and P. Tchofo Dinda, Opt. Lett. 24, 1561 (1999).
    [CrossRef]
  6. J. R. Thompson and R. Roy, Phys. Rev. A 43, 4987 (1991).
    [CrossRef] [PubMed]
  7. S. Trillo, S. Wabnitz, and T. A. B. Kennedy, Phys. Rev. A 50, 1732 (1994).
    [CrossRef] [PubMed]
  8. D. F. Grosz, C. Mazzali, S. Celaschi, A. Paradisi, and H. L. Fragnito, IEEE Photon. Technol. Lett. 11, 379 (1999).
    [CrossRef]

2000

E. Seve, G. Millot, and S. Trillo, Phys. Rev. E 61, 3139 (2000).
[CrossRef]

1999

D. F. Grosz, C. Mazzali, S. Celaschi, A. Paradisi, and H. L. Fragnito, IEEE Photon. Technol. Lett. 11, 379 (1999).
[CrossRef]

T. Sylvestre, H. Maillotte, E. Lantz, and P. Tchofo Dinda, Opt. Lett. 24, 1561 (1999).
[CrossRef]

1998

G. Millot, E. Seve, S. Wabnitz, and S. Trillo, Phys. Rev. Lett. 80, 504 (1998).
[CrossRef]

1995

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Adademic, San Diego, Calif., 1995).

1994

S. Trillo, S. Wabnitz, and T. A. B. Kennedy, Phys. Rev. A 50, 1732 (1994).
[CrossRef] [PubMed]

1991

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Adademic, San Diego, Calif., 1995).

Cappellini, G.

Celaschi, S.

D. F. Grosz, C. Mazzali, S. Celaschi, A. Paradisi, and H. L. Fragnito, IEEE Photon. Technol. Lett. 11, 379 (1999).
[CrossRef]

Fragnito, H. L.

D. F. Grosz, C. Mazzali, S. Celaschi, A. Paradisi, and H. L. Fragnito, IEEE Photon. Technol. Lett. 11, 379 (1999).
[CrossRef]

Grosz, D. F.

D. F. Grosz, C. Mazzali, S. Celaschi, A. Paradisi, and H. L. Fragnito, IEEE Photon. Technol. Lett. 11, 379 (1999).
[CrossRef]

Kennedy, T. A. B.

S. Trillo, S. Wabnitz, and T. A. B. Kennedy, Phys. Rev. A 50, 1732 (1994).
[CrossRef] [PubMed]

Lantz, E.

Maillotte, H.

Mazzali, C.

D. F. Grosz, C. Mazzali, S. Celaschi, A. Paradisi, and H. L. Fragnito, IEEE Photon. Technol. Lett. 11, 379 (1999).
[CrossRef]

Millot, G.

E. Seve, G. Millot, and S. Trillo, Phys. Rev. E 61, 3139 (2000).
[CrossRef]

G. Millot, E. Seve, S. Wabnitz, and S. Trillo, Phys. Rev. Lett. 80, 504 (1998).
[CrossRef]

Paradisi, A.

D. F. Grosz, C. Mazzali, S. Celaschi, A. Paradisi, and H. L. Fragnito, IEEE Photon. Technol. Lett. 11, 379 (1999).
[CrossRef]

Roy, R.

J. R. Thompson and R. Roy, Phys. Rev. A 43, 4987 (1991).
[CrossRef] [PubMed]

Seve, E.

E. Seve, G. Millot, and S. Trillo, Phys. Rev. E 61, 3139 (2000).
[CrossRef]

G. Millot, E. Seve, S. Wabnitz, and S. Trillo, Phys. Rev. Lett. 80, 504 (1998).
[CrossRef]

Sylvestre, T.

Tchofo Dinda, P.

Thompson, J. R.

J. R. Thompson and R. Roy, Phys. Rev. A 43, 4987 (1991).
[CrossRef] [PubMed]

Trillo, S.

E. Seve, G. Millot, and S. Trillo, Phys. Rev. E 61, 3139 (2000).
[CrossRef]

G. Millot, E. Seve, S. Wabnitz, and S. Trillo, Phys. Rev. Lett. 80, 504 (1998).
[CrossRef]

S. Trillo, S. Wabnitz, and T. A. B. Kennedy, Phys. Rev. A 50, 1732 (1994).
[CrossRef] [PubMed]

G. Cappellini and S. Trillo, J. Opt. Soc. Am. B 8, 824 (1991).
[CrossRef]

Wabnitz, S.

G. Millot, E. Seve, S. Wabnitz, and S. Trillo, Phys. Rev. Lett. 80, 504 (1998).
[CrossRef]

S. Trillo, S. Wabnitz, and T. A. B. Kennedy, Phys. Rev. A 50, 1732 (1994).
[CrossRef] [PubMed]

IEEE Photon. Technol. Lett.

D. F. Grosz, C. Mazzali, S. Celaschi, A. Paradisi, and H. L. Fragnito, IEEE Photon. Technol. Lett. 11, 379 (1999).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Lett.

Phys. Rev. A

J. R. Thompson and R. Roy, Phys. Rev. A 43, 4987 (1991).
[CrossRef] [PubMed]

S. Trillo, S. Wabnitz, and T. A. B. Kennedy, Phys. Rev. A 50, 1732 (1994).
[CrossRef] [PubMed]

Phys. Rev. E

E. Seve, G. Millot, and S. Trillo, Phys. Rev. E 61, 3139 (2000).
[CrossRef]

Phys. Rev. Lett.

G. Millot, E. Seve, S. Wabnitz, and S. Trillo, Phys. Rev. Lett. 80, 504 (1998).
[CrossRef]

Other

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Adademic, San Diego, Calif., 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Solid curve, MI gain versus sideband frequency detuning from a 30-W cw pump equally divided on each axis. Thick, solid vertical line, frequency detuning between the pump and the anti-Stokes signals; the second harmonic of this detuning is shown by the thick, dashed vertical line. (b) Spontaneous MI spectrum (i.e., parametrically amplified spontaneous noise) as measured for total pump power Pp=30 W and fiber length L=25 m.

Fig. 2
Fig. 2

Theoretical power spectrum evolution (on a logarithmic scale) with distance in the fast and slow polarization components of the field in the fiber. The total cw pump (signal) power is 30  W (0.5  W), the frequency detuning is 1.45  THz, and the fiber length is 14  m.

Fig. 3
Fig. 3

Output experimental spectra for slow and fast axes with the following pump-signal detunings: (a), (b) f=1.45 THz; (c), (d) f=1.225 THz; (e), (f) f=1.675 THz. Theoretical pulse averaged spectra from (g) slow and (h) fast axes for f=1.45 THz.

Fig. 4
Fig. 4

(a) Input and (c) output experimental autocorrelation traces on the fast fiber axis and (b), (c) corresponding theoretical pulse averaged traces.

Metrics