Structured optical elements that control the spatial and temporal characteristics of femtosecond light pulses are analyzed and synthesized. We show that unique spatiotemporal effects can be attained based on the diffraction, refraction, and dispersive effects that appear in the femtosecond regime. We argue that the design requirements for ultrafast optics are beyond the achromatization considerations that are usually applied to incoherent illumination because of the need to consider coherent effects. Despite fundamental limitations in the space–time control of ultrashort pulses, we show the potential of this technique to improve simultaneously the spatial and the temporal resolution of a lens and to generate ultrafast pulse sequences.

© 2001 Optical Society of America

Full Article  |  PDF Article


  • View by:
  • |
  • |
  • |

  1. A. M. Weiner, J. P. Heritage, and E. M. Kirschner, J. Opt. Soc. Am. B 5, 1563 (1988).
  2. D. E. Leaird and A. M. Weiner, Opt. Lett. 15, 853 (1999).
  3. L. H. Acioli, M. Ulman, E. P. Ippen, J. G. Fujimoto, H. Kong, B. S. Chen, and M. Cronin-Golomb, Opt. Lett. 16, 1984 (1991).
    [Crossref] [PubMed]
  4. P. C. Sun, Y. T. Mazurenko, W. S. C. Chang, P. K. L. Yu, and Y. Fainman, Opt. Lett. 20, 1728 (1995).
  5. R. Szipocs, K. Ferencz, C. Spielmann, and F. Krausz, Opt. Lett. 19, 201 (1994).
  6. E. Ibragimov and E. A. Volynkina, Opt. Lett. 19, 2140 (1994).
    [Crossref] [PubMed]
  7. M. M. Wefers, K. A. Nelson, and A. M. Weiner, Opt. Lett. 21, 746 (1996).
    [Crossref] [PubMed]
  8. K. B. Hill and D. J. Brady, Opt. Lett. 18, 1739 (1993).
    [Crossref] [PubMed]
  9. M. Kempe and W. Rudolph, Phys. Rev. A 48, 4721 (1993).
    [Crossref] [PubMed]
  10. Z. Bor, Opt. Lett. 14, 119 (1989).
    [Crossref] [PubMed]
  11. R. Piestun and D. A. B. Miller, J. Opt. Soc. Am. A 17, 892 (2000).
  12. R. Piestun and J. Shamir, Opt. Lett. 19, 771 (1994).
    [Crossref] [PubMed]

2000 (1)

1999 (1)

D. E. Leaird and A. M. Weiner, Opt. Lett. 15, 853 (1999).

1996 (1)

1995 (1)

1994 (3)

1993 (2)

1991 (1)

1989 (1)

1988 (1)

Acioli, L. H.

Bor, Z.

Brady, D. J.

Chang, W. S. C.

Chen, B. S.

Cronin-Golomb, M.

Fainman, Y.

Ferencz, K.

Fujimoto, J. G.

Heritage, J. P.

Hill, K. B.

Ibragimov, E.

Ippen, E. P.

Kempe, M.

M. Kempe and W. Rudolph, Phys. Rev. A 48, 4721 (1993).
[Crossref] [PubMed]

Kirschner, E. M.

Kong, H.

Krausz, F.

Leaird, D. E.

D. E. Leaird and A. M. Weiner, Opt. Lett. 15, 853 (1999).

Mazurenko, Y. T.

Miller, D. A. B.

Nelson, K. A.

Piestun, R.

Rudolph, W.

M. Kempe and W. Rudolph, Phys. Rev. A 48, 4721 (1993).
[Crossref] [PubMed]

Shamir, J.

Spielmann, C.

Sun, P. C.

Szipocs, R.

Ulman, M.

Volynkina, E. A.

Wefers, M. M.

Weiner, A. M.

Yu, P. K. L.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.

Figures (4)

Fig. 1
Fig. 1

Graphic representation of the spatiotemporal pulse-shaping problem.

Fig. 2
Fig. 2

Response in the focal plane for a 15-fs incident pulse (focal length at 30  cm, f/15): (a) Spatiotemporal response of a singlet spherical lens. (b) Temporal response on axis of the singlet Δt=20.5 fs, the doublet Δt=18.5 fs, and the SOE Δt=15.6 fs. The time origin is arbitrary. (c) Spatiotemporal response of the optimized SOE. All the pulses’s durations Δt are FWHM.

Fig. 3
Fig. 3

(a) Schematic representation of the optimized SOE. (b) The actual diffractive surface relief.

Fig. 4
Fig. 4

Generation of ultrafast pulse trains. Inset, schematic representation of the SOE. (a) Axial temporal intensity at 30  cm. (b) Spatiotemporal diagram at the same location (the time origin is arbitrary).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.