Abstract

We derive a relationship between the bandwidth and active length and a figure of merit for velocity- and near-velocity-matched lithium niobate traveling-wave electro-optic modulators. The figure of merit is given by the bandwidth per unit drive voltage squared and is independent of the length of the device. Alternatively, this figure of merit can be described by its inverse, which is proportional to the device’s switching energy.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. C. Alferness, “Waveguide electrooptic modulators,” IEEE Trans. Microwave Theory Technol. MTT-30, 1121–1137 (1982).
    [CrossRef]
  2. R. C. Alferness, S. K. Korotky, and E. A. J. Marcatili, “Velocity-matching techniques for integrated optic traveling wave switch/modulators,” IEEE J. Quantum Electron. QE-20, 301–309 (1984).
    [CrossRef]
  3. S. K. Korotky, A. H. Gnauck, B. L. Kasper, J. C. Campbell, J. J. Veselka, J. R. Talman, and A. R. McCormick, “8‐Gbit/s transmission experiment over 68  km of optical fiber using a Ti:LiNbO3 external modulator,” J. Lightwave Technol. LT-5, 1505–1509 (1987).
    [CrossRef]
  4. S. K. Korotky and J. J. Veselka, “An RC network analysis of long term Ti:LiNbO3 bias stability,” J. Lightwave Technol. 14, 2687–2697 (1996).
    [CrossRef]
  5. W. K. Burns, M. M. Howerton, R. P. Moeller, R. Krähenbühl, R. W. McElhanon, and A. S. Greenblatt, “Low drive voltage, broadband LiNbO3 modulators with and without ridges,” J. Lightwave Technol. 17, 2551–2555 (1999).
    [CrossRef]
  6. E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communication systems,” IEEE J. Sel. Topics Quantum Electron. 6, 69–82 (2000).
    [CrossRef]
  7. F. Heismann, S. K. Korotky, and J. J. Veselka, “Lithium niobate integrated optics: Selected contemporary devices and system applications,” in Optical Fiber Telecommunications III B, I. P. Kaminow and T. L. Koch, eds. (Academic, San Diego, Calif., 1997), pp. 377–462.
  8. K. Noguchi, O. Mitomi, H. Miyazawa, and S. Seki, “A broadband Ti:LiNbO3 optical modulator with a ridge structure,” J. Lightwave Technol. 13, 1164–1168 (1995).
    [CrossRef]
  9. K. Noguchi, O. Mitomi, and H. Miyazawa, “Millimeter-wave Ti:LiNbO3 optical modulators,” J. Lightwave Technol. 16, 615–619 (1998).
    [CrossRef]
  10. T. A. Ramadan, M. Levy, and R. M. Osgood, “Electro-optic modulation in crystal-ion-sliced z-cut LiNbO3” Appl. Phys. Lett. 76, 1407–1409 (2000).
    [CrossRef]
  11. I.-L. Gheorma, P. Savi, and R. M. Osgood, “Thin layer design of x-cut LiNbO3 modulators,” IEEE Photon. Technol. Lett. 12, 1618–1620 (2000).
    [CrossRef]
  12. G. Balestrino, S. Martellucci, P. G. Medaglia, A. Paoletti, G. Petrocelli, A. Tebano, A. Tucciarone, F. Gelli, E. Giorgetti, S. Sottini, and L. Tapfer, “Epitaxial LiNbO3 thin films grown by pulsed laser deposition for optical waveguides,” Appl. Phys. Lett. 78, 1204–1206 (2001).
    [CrossRef]
  13. H. Chung, W. S. C. Chang, and E. L. Adler, “Modeling and optimization of traveling-wave LiNbO3 interferometric modulators,” IEEE J. Quantum Electron. 27, 608–617 (1991).
    [CrossRef]
  14. S. K. Korotky, Bell Laboratories, Lucent Technologies, Holmdel, N.J. (personal communication, March, 2001).

2001

G. Balestrino, S. Martellucci, P. G. Medaglia, A. Paoletti, G. Petrocelli, A. Tebano, A. Tucciarone, F. Gelli, E. Giorgetti, S. Sottini, and L. Tapfer, “Epitaxial LiNbO3 thin films grown by pulsed laser deposition for optical waveguides,” Appl. Phys. Lett. 78, 1204–1206 (2001).
[CrossRef]

2000

T. A. Ramadan, M. Levy, and R. M. Osgood, “Electro-optic modulation in crystal-ion-sliced z-cut LiNbO3” Appl. Phys. Lett. 76, 1407–1409 (2000).
[CrossRef]

I.-L. Gheorma, P. Savi, and R. M. Osgood, “Thin layer design of x-cut LiNbO3 modulators,” IEEE Photon. Technol. Lett. 12, 1618–1620 (2000).
[CrossRef]

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communication systems,” IEEE J. Sel. Topics Quantum Electron. 6, 69–82 (2000).
[CrossRef]

1999

1998

1996

S. K. Korotky and J. J. Veselka, “An RC network analysis of long term Ti:LiNbO3 bias stability,” J. Lightwave Technol. 14, 2687–2697 (1996).
[CrossRef]

1995

K. Noguchi, O. Mitomi, H. Miyazawa, and S. Seki, “A broadband Ti:LiNbO3 optical modulator with a ridge structure,” J. Lightwave Technol. 13, 1164–1168 (1995).
[CrossRef]

1991

H. Chung, W. S. C. Chang, and E. L. Adler, “Modeling and optimization of traveling-wave LiNbO3 interferometric modulators,” IEEE J. Quantum Electron. 27, 608–617 (1991).
[CrossRef]

1987

S. K. Korotky, A. H. Gnauck, B. L. Kasper, J. C. Campbell, J. J. Veselka, J. R. Talman, and A. R. McCormick, “8‐Gbit/s transmission experiment over 68  km of optical fiber using a Ti:LiNbO3 external modulator,” J. Lightwave Technol. LT-5, 1505–1509 (1987).
[CrossRef]

1984

R. C. Alferness, S. K. Korotky, and E. A. J. Marcatili, “Velocity-matching techniques for integrated optic traveling wave switch/modulators,” IEEE J. Quantum Electron. QE-20, 301–309 (1984).
[CrossRef]

1982

R. C. Alferness, “Waveguide electrooptic modulators,” IEEE Trans. Microwave Theory Technol. MTT-30, 1121–1137 (1982).
[CrossRef]

Adler, E. L.

H. Chung, W. S. C. Chang, and E. L. Adler, “Modeling and optimization of traveling-wave LiNbO3 interferometric modulators,” IEEE J. Quantum Electron. 27, 608–617 (1991).
[CrossRef]

Alferness, R. C.

R. C. Alferness, S. K. Korotky, and E. A. J. Marcatili, “Velocity-matching techniques for integrated optic traveling wave switch/modulators,” IEEE J. Quantum Electron. QE-20, 301–309 (1984).
[CrossRef]

R. C. Alferness, “Waveguide electrooptic modulators,” IEEE Trans. Microwave Theory Technol. MTT-30, 1121–1137 (1982).
[CrossRef]

Attanasio, D. V.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communication systems,” IEEE J. Sel. Topics Quantum Electron. 6, 69–82 (2000).
[CrossRef]

Balestrino, G.

G. Balestrino, S. Martellucci, P. G. Medaglia, A. Paoletti, G. Petrocelli, A. Tebano, A. Tucciarone, F. Gelli, E. Giorgetti, S. Sottini, and L. Tapfer, “Epitaxial LiNbO3 thin films grown by pulsed laser deposition for optical waveguides,” Appl. Phys. Lett. 78, 1204–1206 (2001).
[CrossRef]

Bossi, D. E.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communication systems,” IEEE J. Sel. Topics Quantum Electron. 6, 69–82 (2000).
[CrossRef]

Burns, W. K.

Campbell, J. C.

S. K. Korotky, A. H. Gnauck, B. L. Kasper, J. C. Campbell, J. J. Veselka, J. R. Talman, and A. R. McCormick, “8‐Gbit/s transmission experiment over 68  km of optical fiber using a Ti:LiNbO3 external modulator,” J. Lightwave Technol. LT-5, 1505–1509 (1987).
[CrossRef]

Chang, W. S. C.

H. Chung, W. S. C. Chang, and E. L. Adler, “Modeling and optimization of traveling-wave LiNbO3 interferometric modulators,” IEEE J. Quantum Electron. 27, 608–617 (1991).
[CrossRef]

Chung, H.

H. Chung, W. S. C. Chang, and E. L. Adler, “Modeling and optimization of traveling-wave LiNbO3 interferometric modulators,” IEEE J. Quantum Electron. 27, 608–617 (1991).
[CrossRef]

Fritz, D. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communication systems,” IEEE J. Sel. Topics Quantum Electron. 6, 69–82 (2000).
[CrossRef]

Gelli, F.

G. Balestrino, S. Martellucci, P. G. Medaglia, A. Paoletti, G. Petrocelli, A. Tebano, A. Tucciarone, F. Gelli, E. Giorgetti, S. Sottini, and L. Tapfer, “Epitaxial LiNbO3 thin films grown by pulsed laser deposition for optical waveguides,” Appl. Phys. Lett. 78, 1204–1206 (2001).
[CrossRef]

Gheorma, I.-L.

I.-L. Gheorma, P. Savi, and R. M. Osgood, “Thin layer design of x-cut LiNbO3 modulators,” IEEE Photon. Technol. Lett. 12, 1618–1620 (2000).
[CrossRef]

Giorgetti, E.

G. Balestrino, S. Martellucci, P. G. Medaglia, A. Paoletti, G. Petrocelli, A. Tebano, A. Tucciarone, F. Gelli, E. Giorgetti, S. Sottini, and L. Tapfer, “Epitaxial LiNbO3 thin films grown by pulsed laser deposition for optical waveguides,” Appl. Phys. Lett. 78, 1204–1206 (2001).
[CrossRef]

Gnauck, A. H.

S. K. Korotky, A. H. Gnauck, B. L. Kasper, J. C. Campbell, J. J. Veselka, J. R. Talman, and A. R. McCormick, “8‐Gbit/s transmission experiment over 68  km of optical fiber using a Ti:LiNbO3 external modulator,” J. Lightwave Technol. LT-5, 1505–1509 (1987).
[CrossRef]

Greenblatt, A. S.

Hallemeier, P. F.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communication systems,” IEEE J. Sel. Topics Quantum Electron. 6, 69–82 (2000).
[CrossRef]

Heismann, F.

F. Heismann, S. K. Korotky, and J. J. Veselka, “Lithium niobate integrated optics: Selected contemporary devices and system applications,” in Optical Fiber Telecommunications III B, I. P. Kaminow and T. L. Koch, eds. (Academic, San Diego, Calif., 1997), pp. 377–462.

Howerton, M. M.

Kasper, B. L.

S. K. Korotky, A. H. Gnauck, B. L. Kasper, J. C. Campbell, J. J. Veselka, J. R. Talman, and A. R. McCormick, “8‐Gbit/s transmission experiment over 68  km of optical fiber using a Ti:LiNbO3 external modulator,” J. Lightwave Technol. LT-5, 1505–1509 (1987).
[CrossRef]

Kissa, K. M.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communication systems,” IEEE J. Sel. Topics Quantum Electron. 6, 69–82 (2000).
[CrossRef]

Korotky, S. K.

S. K. Korotky and J. J. Veselka, “An RC network analysis of long term Ti:LiNbO3 bias stability,” J. Lightwave Technol. 14, 2687–2697 (1996).
[CrossRef]

S. K. Korotky, A. H. Gnauck, B. L. Kasper, J. C. Campbell, J. J. Veselka, J. R. Talman, and A. R. McCormick, “8‐Gbit/s transmission experiment over 68  km of optical fiber using a Ti:LiNbO3 external modulator,” J. Lightwave Technol. LT-5, 1505–1509 (1987).
[CrossRef]

R. C. Alferness, S. K. Korotky, and E. A. J. Marcatili, “Velocity-matching techniques for integrated optic traveling wave switch/modulators,” IEEE J. Quantum Electron. QE-20, 301–309 (1984).
[CrossRef]

F. Heismann, S. K. Korotky, and J. J. Veselka, “Lithium niobate integrated optics: Selected contemporary devices and system applications,” in Optical Fiber Telecommunications III B, I. P. Kaminow and T. L. Koch, eds. (Academic, San Diego, Calif., 1997), pp. 377–462.

S. K. Korotky, Bell Laboratories, Lucent Technologies, Holmdel, N.J. (personal communication, March, 2001).

Krähenbühl, R.

Lafaw, D. A.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communication systems,” IEEE J. Sel. Topics Quantum Electron. 6, 69–82 (2000).
[CrossRef]

Levy, M.

T. A. Ramadan, M. Levy, and R. M. Osgood, “Electro-optic modulation in crystal-ion-sliced z-cut LiNbO3” Appl. Phys. Lett. 76, 1407–1409 (2000).
[CrossRef]

Maack, D.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communication systems,” IEEE J. Sel. Topics Quantum Electron. 6, 69–82 (2000).
[CrossRef]

Marcatili, E. A. J.

R. C. Alferness, S. K. Korotky, and E. A. J. Marcatili, “Velocity-matching techniques for integrated optic traveling wave switch/modulators,” IEEE J. Quantum Electron. QE-20, 301–309 (1984).
[CrossRef]

Martellucci, S.

G. Balestrino, S. Martellucci, P. G. Medaglia, A. Paoletti, G. Petrocelli, A. Tebano, A. Tucciarone, F. Gelli, E. Giorgetti, S. Sottini, and L. Tapfer, “Epitaxial LiNbO3 thin films grown by pulsed laser deposition for optical waveguides,” Appl. Phys. Lett. 78, 1204–1206 (2001).
[CrossRef]

McBrien, G. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communication systems,” IEEE J. Sel. Topics Quantum Electron. 6, 69–82 (2000).
[CrossRef]

McCormick, A. R.

S. K. Korotky, A. H. Gnauck, B. L. Kasper, J. C. Campbell, J. J. Veselka, J. R. Talman, and A. R. McCormick, “8‐Gbit/s transmission experiment over 68  km of optical fiber using a Ti:LiNbO3 external modulator,” J. Lightwave Technol. LT-5, 1505–1509 (1987).
[CrossRef]

McElhanon, R. W.

Medaglia, P. G.

G. Balestrino, S. Martellucci, P. G. Medaglia, A. Paoletti, G. Petrocelli, A. Tebano, A. Tucciarone, F. Gelli, E. Giorgetti, S. Sottini, and L. Tapfer, “Epitaxial LiNbO3 thin films grown by pulsed laser deposition for optical waveguides,” Appl. Phys. Lett. 78, 1204–1206 (2001).
[CrossRef]

Mitomi, O.

K. Noguchi, O. Mitomi, and H. Miyazawa, “Millimeter-wave Ti:LiNbO3 optical modulators,” J. Lightwave Technol. 16, 615–619 (1998).
[CrossRef]

K. Noguchi, O. Mitomi, H. Miyazawa, and S. Seki, “A broadband Ti:LiNbO3 optical modulator with a ridge structure,” J. Lightwave Technol. 13, 1164–1168 (1995).
[CrossRef]

Miyazawa, H.

K. Noguchi, O. Mitomi, and H. Miyazawa, “Millimeter-wave Ti:LiNbO3 optical modulators,” J. Lightwave Technol. 16, 615–619 (1998).
[CrossRef]

K. Noguchi, O. Mitomi, H. Miyazawa, and S. Seki, “A broadband Ti:LiNbO3 optical modulator with a ridge structure,” J. Lightwave Technol. 13, 1164–1168 (1995).
[CrossRef]

Moeller, R. P.

Murphy, E. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communication systems,” IEEE J. Sel. Topics Quantum Electron. 6, 69–82 (2000).
[CrossRef]

Noguchi, K.

K. Noguchi, O. Mitomi, and H. Miyazawa, “Millimeter-wave Ti:LiNbO3 optical modulators,” J. Lightwave Technol. 16, 615–619 (1998).
[CrossRef]

K. Noguchi, O. Mitomi, H. Miyazawa, and S. Seki, “A broadband Ti:LiNbO3 optical modulator with a ridge structure,” J. Lightwave Technol. 13, 1164–1168 (1995).
[CrossRef]

Osgood, R. M.

T. A. Ramadan, M. Levy, and R. M. Osgood, “Electro-optic modulation in crystal-ion-sliced z-cut LiNbO3” Appl. Phys. Lett. 76, 1407–1409 (2000).
[CrossRef]

I.-L. Gheorma, P. Savi, and R. M. Osgood, “Thin layer design of x-cut LiNbO3 modulators,” IEEE Photon. Technol. Lett. 12, 1618–1620 (2000).
[CrossRef]

Paoletti, A.

G. Balestrino, S. Martellucci, P. G. Medaglia, A. Paoletti, G. Petrocelli, A. Tebano, A. Tucciarone, F. Gelli, E. Giorgetti, S. Sottini, and L. Tapfer, “Epitaxial LiNbO3 thin films grown by pulsed laser deposition for optical waveguides,” Appl. Phys. Lett. 78, 1204–1206 (2001).
[CrossRef]

Petrocelli, G.

G. Balestrino, S. Martellucci, P. G. Medaglia, A. Paoletti, G. Petrocelli, A. Tebano, A. Tucciarone, F. Gelli, E. Giorgetti, S. Sottini, and L. Tapfer, “Epitaxial LiNbO3 thin films grown by pulsed laser deposition for optical waveguides,” Appl. Phys. Lett. 78, 1204–1206 (2001).
[CrossRef]

Ramadan, T. A.

T. A. Ramadan, M. Levy, and R. M. Osgood, “Electro-optic modulation in crystal-ion-sliced z-cut LiNbO3” Appl. Phys. Lett. 76, 1407–1409 (2000).
[CrossRef]

Savi, P.

I.-L. Gheorma, P. Savi, and R. M. Osgood, “Thin layer design of x-cut LiNbO3 modulators,” IEEE Photon. Technol. Lett. 12, 1618–1620 (2000).
[CrossRef]

Seki, S.

K. Noguchi, O. Mitomi, H. Miyazawa, and S. Seki, “A broadband Ti:LiNbO3 optical modulator with a ridge structure,” J. Lightwave Technol. 13, 1164–1168 (1995).
[CrossRef]

Sottini, S.

G. Balestrino, S. Martellucci, P. G. Medaglia, A. Paoletti, G. Petrocelli, A. Tebano, A. Tucciarone, F. Gelli, E. Giorgetti, S. Sottini, and L. Tapfer, “Epitaxial LiNbO3 thin films grown by pulsed laser deposition for optical waveguides,” Appl. Phys. Lett. 78, 1204–1206 (2001).
[CrossRef]

Talman, J. R.

S. K. Korotky, A. H. Gnauck, B. L. Kasper, J. C. Campbell, J. J. Veselka, J. R. Talman, and A. R. McCormick, “8‐Gbit/s transmission experiment over 68  km of optical fiber using a Ti:LiNbO3 external modulator,” J. Lightwave Technol. LT-5, 1505–1509 (1987).
[CrossRef]

Tapfer, L.

G. Balestrino, S. Martellucci, P. G. Medaglia, A. Paoletti, G. Petrocelli, A. Tebano, A. Tucciarone, F. Gelli, E. Giorgetti, S. Sottini, and L. Tapfer, “Epitaxial LiNbO3 thin films grown by pulsed laser deposition for optical waveguides,” Appl. Phys. Lett. 78, 1204–1206 (2001).
[CrossRef]

Tebano, A.

G. Balestrino, S. Martellucci, P. G. Medaglia, A. Paoletti, G. Petrocelli, A. Tebano, A. Tucciarone, F. Gelli, E. Giorgetti, S. Sottini, and L. Tapfer, “Epitaxial LiNbO3 thin films grown by pulsed laser deposition for optical waveguides,” Appl. Phys. Lett. 78, 1204–1206 (2001).
[CrossRef]

Tucciarone, A.

G. Balestrino, S. Martellucci, P. G. Medaglia, A. Paoletti, G. Petrocelli, A. Tebano, A. Tucciarone, F. Gelli, E. Giorgetti, S. Sottini, and L. Tapfer, “Epitaxial LiNbO3 thin films grown by pulsed laser deposition for optical waveguides,” Appl. Phys. Lett. 78, 1204–1206 (2001).
[CrossRef]

Veselka, J. J.

S. K. Korotky and J. J. Veselka, “An RC network analysis of long term Ti:LiNbO3 bias stability,” J. Lightwave Technol. 14, 2687–2697 (1996).
[CrossRef]

S. K. Korotky, A. H. Gnauck, B. L. Kasper, J. C. Campbell, J. J. Veselka, J. R. Talman, and A. R. McCormick, “8‐Gbit/s transmission experiment over 68  km of optical fiber using a Ti:LiNbO3 external modulator,” J. Lightwave Technol. LT-5, 1505–1509 (1987).
[CrossRef]

F. Heismann, S. K. Korotky, and J. J. Veselka, “Lithium niobate integrated optics: Selected contemporary devices and system applications,” in Optical Fiber Telecommunications III B, I. P. Kaminow and T. L. Koch, eds. (Academic, San Diego, Calif., 1997), pp. 377–462.

Wooten, E. L.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communication systems,” IEEE J. Sel. Topics Quantum Electron. 6, 69–82 (2000).
[CrossRef]

Yi-Yan, A.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communication systems,” IEEE J. Sel. Topics Quantum Electron. 6, 69–82 (2000).
[CrossRef]

Appl. Phys. Lett.

T. A. Ramadan, M. Levy, and R. M. Osgood, “Electro-optic modulation in crystal-ion-sliced z-cut LiNbO3” Appl. Phys. Lett. 76, 1407–1409 (2000).
[CrossRef]

G. Balestrino, S. Martellucci, P. G. Medaglia, A. Paoletti, G. Petrocelli, A. Tebano, A. Tucciarone, F. Gelli, E. Giorgetti, S. Sottini, and L. Tapfer, “Epitaxial LiNbO3 thin films grown by pulsed laser deposition for optical waveguides,” Appl. Phys. Lett. 78, 1204–1206 (2001).
[CrossRef]

IEEE J. Quantum Electron.

H. Chung, W. S. C. Chang, and E. L. Adler, “Modeling and optimization of traveling-wave LiNbO3 interferometric modulators,” IEEE J. Quantum Electron. 27, 608–617 (1991).
[CrossRef]

R. C. Alferness, S. K. Korotky, and E. A. J. Marcatili, “Velocity-matching techniques for integrated optic traveling wave switch/modulators,” IEEE J. Quantum Electron. QE-20, 301–309 (1984).
[CrossRef]

IEEE J. Sel. Topics Quantum Electron.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communication systems,” IEEE J. Sel. Topics Quantum Electron. 6, 69–82 (2000).
[CrossRef]

IEEE Photon. Technol. Lett.

I.-L. Gheorma, P. Savi, and R. M. Osgood, “Thin layer design of x-cut LiNbO3 modulators,” IEEE Photon. Technol. Lett. 12, 1618–1620 (2000).
[CrossRef]

IEEE Trans. Microwave Theory Technol.

R. C. Alferness, “Waveguide electrooptic modulators,” IEEE Trans. Microwave Theory Technol. MTT-30, 1121–1137 (1982).
[CrossRef]

J. Lightwave Technol.

K. Noguchi, O. Mitomi, H. Miyazawa, and S. Seki, “A broadband Ti:LiNbO3 optical modulator with a ridge structure,” J. Lightwave Technol. 13, 1164–1168 (1995).
[CrossRef]

K. Noguchi, O. Mitomi, and H. Miyazawa, “Millimeter-wave Ti:LiNbO3 optical modulators,” J. Lightwave Technol. 16, 615–619 (1998).
[CrossRef]

S. K. Korotky, A. H. Gnauck, B. L. Kasper, J. C. Campbell, J. J. Veselka, J. R. Talman, and A. R. McCormick, “8‐Gbit/s transmission experiment over 68  km of optical fiber using a Ti:LiNbO3 external modulator,” J. Lightwave Technol. LT-5, 1505–1509 (1987).
[CrossRef]

S. K. Korotky and J. J. Veselka, “An RC network analysis of long term Ti:LiNbO3 bias stability,” J. Lightwave Technol. 14, 2687–2697 (1996).
[CrossRef]

W. K. Burns, M. M. Howerton, R. P. Moeller, R. Krähenbühl, R. W. McElhanon, and A. S. Greenblatt, “Low drive voltage, broadband LiNbO3 modulators with and without ridges,” J. Lightwave Technol. 17, 2551–2555 (1999).
[CrossRef]

Other

F. Heismann, S. K. Korotky, and J. J. Veselka, “Lithium niobate integrated optics: Selected contemporary devices and system applications,” in Optical Fiber Telecommunications III B, I. P. Kaminow and T. L. Koch, eds. (Academic, San Diego, Calif., 1997), pp. 377–462.

S. K. Korotky, Bell Laboratories, Lucent Technologies, Holmdel, N.J. (personal communication, March, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Numerical simulation of the figure of merit GHz/V2 versus (a) bandwidth and (b) drive voltage for different values of the index mismatch, Nm-No. The input optical wavelength is λ=1.55 μm, and the cross-sectional parameters of the modulator are α0=0.3 dB/cm-GHz, Γ=0.5, No=2.15, r33=33 pm/V, and G=15 μm. The length of the modulator was varied from 2 to 20  cm, and the corresponding bandwidth, drive voltage, and figure of merit were computed.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Mν=exp-αL/2sin2γL/2+1/41-exp-αL/22γL/22+αL/42,
Mν1-exp-αL/22αL/22.
ν3 dB2.2α0L2.
L=λGNo3rΓVπ,
F=ν3 dBVπ2=1.484No3rΓα0λG2.

Metrics