Abstract

The cross correlation between polarization states of scattered laser speckle as a function of scattering angle is observed for a range of spherical and nonspherical particle suspensions. A variation in the degree of correlation between polarization states is observed, and this information is indicative of the particle shape. A comparison with a theoretical model for small particles is made, suggesting that variations in polarization correlation with angle originate from the nonisotropic polarizability of nonspheres. Experiments are also performed on large spheroids and random-shaped polydispersions, and the results indicate that the measurement method has significant potential for nonsphere detection and characterization.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Allen, Particle Size Measurement, 3rd ed. (Chapman & Hall, London, 1981).
    [CrossRef]
  2. H. Umhauer and M. Bottlinger, Appl. Opt. 30, 4980 (1991).
    [CrossRef] [PubMed]
  3. K. Inada and K. Matumoto, J. Soc. Powder Technol. Jpn. 32, 722 (1995).
    [CrossRef]
  4. H. Muhlenweg and E. D. Hirleman, Part. Part. Syst. Charact. 15, 163 (1998).
    [CrossRef]
  5. P. H. Kaye, Meas. Sci. Technol. 9, 141 (1998).
    [CrossRef]
  6. M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, Light Scattering by Nonspherical Particles (Academic, New York, 2000).
  7. J. M. Rosen, R. G. Pinnick, and D. M. Garvey, Appl. Opt. 36, 2642 (1997).
    [CrossRef] [PubMed]
  8. E. Jakeman, Waves Random Media 5, 427 (1995).
    [CrossRef]
  9. A. P. Bates, K. I. Hopcraft, and E. Jakeman, Waves Random Media 8, 235 (1998).
    [CrossRef]
  10. M. Pitter, K. I. Hopcraft, E. Jakeman, and J. G. Walker, J. Quant. Spectrosc. Radiat. Transfer 63, 433 (1999).
    [CrossRef]
  11. S. Hamada and E. Matijevic, J. Colloid Interface Sci. 84, 274 (1981).
    [CrossRef]
  12. J. W. Goodman, Statistical Optics (Wiley, New York, 1985).

1999

M. Pitter, K. I. Hopcraft, E. Jakeman, and J. G. Walker, J. Quant. Spectrosc. Radiat. Transfer 63, 433 (1999).
[CrossRef]

1998

H. Muhlenweg and E. D. Hirleman, Part. Part. Syst. Charact. 15, 163 (1998).
[CrossRef]

P. H. Kaye, Meas. Sci. Technol. 9, 141 (1998).
[CrossRef]

A. P. Bates, K. I. Hopcraft, and E. Jakeman, Waves Random Media 8, 235 (1998).
[CrossRef]

1997

1995

K. Inada and K. Matumoto, J. Soc. Powder Technol. Jpn. 32, 722 (1995).
[CrossRef]

E. Jakeman, Waves Random Media 5, 427 (1995).
[CrossRef]

1991

1981

S. Hamada and E. Matijevic, J. Colloid Interface Sci. 84, 274 (1981).
[CrossRef]

Allen, T.

T. Allen, Particle Size Measurement, 3rd ed. (Chapman & Hall, London, 1981).
[CrossRef]

Bates, A. P.

A. P. Bates, K. I. Hopcraft, and E. Jakeman, Waves Random Media 8, 235 (1998).
[CrossRef]

Bottlinger, M.

Garvey, D. M.

Goodman, J. W.

J. W. Goodman, Statistical Optics (Wiley, New York, 1985).

Hamada, S.

S. Hamada and E. Matijevic, J. Colloid Interface Sci. 84, 274 (1981).
[CrossRef]

Hirleman, E. D.

H. Muhlenweg and E. D. Hirleman, Part. Part. Syst. Charact. 15, 163 (1998).
[CrossRef]

Hopcraft, K. I.

M. Pitter, K. I. Hopcraft, E. Jakeman, and J. G. Walker, J. Quant. Spectrosc. Radiat. Transfer 63, 433 (1999).
[CrossRef]

A. P. Bates, K. I. Hopcraft, and E. Jakeman, Waves Random Media 8, 235 (1998).
[CrossRef]

Hovenier, J. W.

M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, Light Scattering by Nonspherical Particles (Academic, New York, 2000).

Inada, K.

K. Inada and K. Matumoto, J. Soc. Powder Technol. Jpn. 32, 722 (1995).
[CrossRef]

Jakeman, E.

M. Pitter, K. I. Hopcraft, E. Jakeman, and J. G. Walker, J. Quant. Spectrosc. Radiat. Transfer 63, 433 (1999).
[CrossRef]

A. P. Bates, K. I. Hopcraft, and E. Jakeman, Waves Random Media 8, 235 (1998).
[CrossRef]

E. Jakeman, Waves Random Media 5, 427 (1995).
[CrossRef]

Kaye, P. H.

P. H. Kaye, Meas. Sci. Technol. 9, 141 (1998).
[CrossRef]

Matijevic, E.

S. Hamada and E. Matijevic, J. Colloid Interface Sci. 84, 274 (1981).
[CrossRef]

Matumoto, K.

K. Inada and K. Matumoto, J. Soc. Powder Technol. Jpn. 32, 722 (1995).
[CrossRef]

Mishchenko, M. I.

M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, Light Scattering by Nonspherical Particles (Academic, New York, 2000).

Muhlenweg, H.

H. Muhlenweg and E. D. Hirleman, Part. Part. Syst. Charact. 15, 163 (1998).
[CrossRef]

Pinnick, R. G.

Pitter, M.

M. Pitter, K. I. Hopcraft, E. Jakeman, and J. G. Walker, J. Quant. Spectrosc. Radiat. Transfer 63, 433 (1999).
[CrossRef]

Rosen, J. M.

Travis, L. D.

M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, Light Scattering by Nonspherical Particles (Academic, New York, 2000).

Umhauer, H.

Walker, J. G.

M. Pitter, K. I. Hopcraft, E. Jakeman, and J. G. Walker, J. Quant. Spectrosc. Radiat. Transfer 63, 433 (1999).
[CrossRef]

Appl. Opt.

J. Colloid Interface Sci.

S. Hamada and E. Matijevic, J. Colloid Interface Sci. 84, 274 (1981).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer

M. Pitter, K. I. Hopcraft, E. Jakeman, and J. G. Walker, J. Quant. Spectrosc. Radiat. Transfer 63, 433 (1999).
[CrossRef]

J. Soc. Powder Technol. Jpn.

K. Inada and K. Matumoto, J. Soc. Powder Technol. Jpn. 32, 722 (1995).
[CrossRef]

Meas. Sci. Technol.

P. H. Kaye, Meas. Sci. Technol. 9, 141 (1998).
[CrossRef]

Part. Part. Syst. Charact.

H. Muhlenweg and E. D. Hirleman, Part. Part. Syst. Charact. 15, 163 (1998).
[CrossRef]

Waves Random Media

E. Jakeman, Waves Random Media 5, 427 (1995).
[CrossRef]

A. P. Bates, K. I. Hopcraft, and E. Jakeman, Waves Random Media 8, 235 (1998).
[CrossRef]

Other

J. W. Goodman, Statistical Optics (Wiley, New York, 1985).

T. Allen, Particle Size Measurement, 3rd ed. (Chapman & Hall, London, 1981).
[CrossRef]

M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, Light Scattering by Nonspherical Particles (Academic, New York, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental arrangement for measuring the cross-correlation coefficient of scattered polarized light. A linearly polarized laser beam (He–Ne, 632  nm) is coupled via a polarization-preserving optical fiber onto a scanning goniometer consisting of focusing optics and a sample holder. The first aperture A1 limits the extent of the measurement area in the sample chamber, and the second aperture A2 ensures coherent detection of the projected speckle patterns.

Fig. 2
Fig. 2

Polarization correlation coefficient as a function of scattering angle for small particles. The data are derived for latex spheres of 488-nm diameter and for spheroids with an equivalent sphere diameter of 100  nm and physical aspect ratios R of 1.8 and 2.7 (particles H and I, respectively, in Table  1). The theoretical results from Ref.  9 are plotted (thick curves) for comparison. Refer to Table  1 for the correspondence between physical aspect ratio R and dipole polarizability ratio x.

Fig. 3
Fig. 3

Polarization correlation coefficient as a function of scattering angle for large particles. The data are derived for latex spheres of 1μm diameter, Arizona fine sand filtered to a size range 05 μm, and hematite spheroids (particles A and D in Table  1).

Tables (1)

Tables Icon

Table 1 Prolate Hematite Particles Characterized by Length of the Rotation Axis, Width (Diameter of Rotation), Volume-Equivalent Sphere Diameter d, Physical Aspect Ratio R, and Dipole Polarizability Ratio x a

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Np,sNp,s-1Np,s-k+1=αkIp,sk,
Ip,s2=Ip,s2Ip,s2=Np,sNp,s-1Np,s2.
γps=Ip-IpIs-IsIp-Ip2Is-Is21/2.
γps=NpNsNpNs-1/NpNp-1Np2-1NsNs-1N22-11/2.

Metrics