Abstract

We report a highly sensitive means of measuring cellular dynamics with a novel interferometer that can measure motional phase changes. The system is based on a modified Michelson interferometer with a composite laser beam of 1550-nm low-coherence light and 775-nm CW light. The sample is prepared on a coverslip that is highly reflective at 775  nm. By referencing the heterodyne phase of the 1550-nm light reflected from the sample to that of the 775-nm light reflected from the coverslip, small motions in the sample are detected, and motional artifacts from vibrations in the interferometer are completely eliminated. We demonstrate that the system is sensitive to motions as small as 3.6  nm and velocities as small as 1  nm/s. Using the instrument, we study transient volume changes of a few (approximately three) cells in a monolayer immersed in weakly hypotonic and hypertonic solutions.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. L. Rogers and V. I. Gelfand, Curr. Opin. Cell Biol. 12, 57 (2000).
    [CrossRef] [PubMed]
  2. D. S. Coffey, J. P. Karr, R. G. Smith, and D. J. Tindall, Molecular and Cellular Biology of Prostate Cancer (Plenum, New York, 1991).
  3. K. Strange, Cellular and Molecular Physiology of Cell Volume Regulation (CRC Press, Boca Raton, Fla., 1993).
  4. A. W. Partin, J. S. Shoeniger, J. L. Mohler, and D. S. Coffey, Proc. Natl. Acad. Sci. USA 86, 1254 (1989).
    [CrossRef]
  5. Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J. F. de Boer, and J. S. Nelson, Opt. Lett. 25, 114 (2000).
    [CrossRef]
  6. S. Yazdanfar, A. M. Rollins, and J. A. Izatt, Opt. Lett. 25, 1448 (2000).
    [CrossRef]
  7. C. Yang, A. Wax, R. R. Dasari, and M. S. Feld, Opt. Lett. (2001).
  8. K. R. Hallows, C. H. Packman, and P. A. Knauf, Am. J. Physiol. 261, C1154 (1991).
    [PubMed]
  9. The interference signal from this interface cannot be resolved from the signal arising from the boundary between the coverslip and the cells, as the optical path difference is smaller than the coherence length. Extraction of amplitude-based information is not possible; however, the phase shift associated with either interface can be found by measurement at sufficient displacements from the peak interference signal.

2001 (1)

C. Yang, A. Wax, R. R. Dasari, and M. S. Feld, Opt. Lett. (2001).

2000 (3)

1991 (1)

K. R. Hallows, C. H. Packman, and P. A. Knauf, Am. J. Physiol. 261, C1154 (1991).
[PubMed]

1989 (1)

A. W. Partin, J. S. Shoeniger, J. L. Mohler, and D. S. Coffey, Proc. Natl. Acad. Sci. USA 86, 1254 (1989).
[CrossRef]

Chen, Z.

Coffey, D. S.

A. W. Partin, J. S. Shoeniger, J. L. Mohler, and D. S. Coffey, Proc. Natl. Acad. Sci. USA 86, 1254 (1989).
[CrossRef]

D. S. Coffey, J. P. Karr, R. G. Smith, and D. J. Tindall, Molecular and Cellular Biology of Prostate Cancer (Plenum, New York, 1991).

Dasari, R. R.

C. Yang, A. Wax, R. R. Dasari, and M. S. Feld, Opt. Lett. (2001).

de Boer, J. F.

Feld, M. S.

C. Yang, A. Wax, R. R. Dasari, and M. S. Feld, Opt. Lett. (2001).

Gelfand, V. I.

S. L. Rogers and V. I. Gelfand, Curr. Opin. Cell Biol. 12, 57 (2000).
[CrossRef] [PubMed]

Hallows, K. R.

K. R. Hallows, C. H. Packman, and P. A. Knauf, Am. J. Physiol. 261, C1154 (1991).
[PubMed]

Izatt, J. A.

Karr, J. P.

D. S. Coffey, J. P. Karr, R. G. Smith, and D. J. Tindall, Molecular and Cellular Biology of Prostate Cancer (Plenum, New York, 1991).

Knauf, P. A.

K. R. Hallows, C. H. Packman, and P. A. Knauf, Am. J. Physiol. 261, C1154 (1991).
[PubMed]

Mohler, J. L.

A. W. Partin, J. S. Shoeniger, J. L. Mohler, and D. S. Coffey, Proc. Natl. Acad. Sci. USA 86, 1254 (1989).
[CrossRef]

Nelson, J. S.

Packman, C. H.

K. R. Hallows, C. H. Packman, and P. A. Knauf, Am. J. Physiol. 261, C1154 (1991).
[PubMed]

Partin, A. W.

A. W. Partin, J. S. Shoeniger, J. L. Mohler, and D. S. Coffey, Proc. Natl. Acad. Sci. USA 86, 1254 (1989).
[CrossRef]

Rogers, S. L.

S. L. Rogers and V. I. Gelfand, Curr. Opin. Cell Biol. 12, 57 (2000).
[CrossRef] [PubMed]

Rollins, A. M.

Saxer, C.

Shoeniger, J. S.

A. W. Partin, J. S. Shoeniger, J. L. Mohler, and D. S. Coffey, Proc. Natl. Acad. Sci. USA 86, 1254 (1989).
[CrossRef]

Smith, R. G.

D. S. Coffey, J. P. Karr, R. G. Smith, and D. J. Tindall, Molecular and Cellular Biology of Prostate Cancer (Plenum, New York, 1991).

Strange, K.

K. Strange, Cellular and Molecular Physiology of Cell Volume Regulation (CRC Press, Boca Raton, Fla., 1993).

Tindall, D. J.

D. S. Coffey, J. P. Karr, R. G. Smith, and D. J. Tindall, Molecular and Cellular Biology of Prostate Cancer (Plenum, New York, 1991).

Wax, A.

C. Yang, A. Wax, R. R. Dasari, and M. S. Feld, Opt. Lett. (2001).

Xiang, S.

Yang, C.

C. Yang, A. Wax, R. R. Dasari, and M. S. Feld, Opt. Lett. (2001).

Yazdanfar, S.

Zhao, Y.

Am. J. Physiol. (1)

K. R. Hallows, C. H. Packman, and P. A. Knauf, Am. J. Physiol. 261, C1154 (1991).
[PubMed]

Curr. Opin. Cell Biol. (1)

S. L. Rogers and V. I. Gelfand, Curr. Opin. Cell Biol. 12, 57 (2000).
[CrossRef] [PubMed]

Opt. Lett. (3)

Proc. Natl. Acad. Sci. USA (1)

A. W. Partin, J. S. Shoeniger, J. L. Mohler, and D. S. Coffey, Proc. Natl. Acad. Sci. USA 86, 1254 (1989).
[CrossRef]

Other (3)

D. S. Coffey, J. P. Karr, R. G. Smith, and D. J. Tindall, Molecular and Cellular Biology of Prostate Cancer (Plenum, New York, 1991).

K. Strange, Cellular and Molecular Physiology of Cell Volume Regulation (CRC Press, Boca Raton, Fla., 1993).

The interference signal from this interface cannot be resolved from the signal arising from the boundary between the coverslip and the cells, as the optical path difference is smaller than the coherence length. Extraction of amplitude-based information is not possible; however, the phase shift associated with either interface can be found by measurement at sufficient displacements from the peak interference signal.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Experimental setup: M, reference mirror; BS, beam splitter; O1, O2, microscope objectives; D1, D2, photodetectors; DM, 775  nm/1550  nm dichroic mirror; CS, coverslip; ADC, analog–digital converter.

Fig. 2
Fig. 2

PRI analysis of a slowly moving PZT: (a) geometrical arrangement, (b) depth-resolved PRI image of ΨDt, (c) trace of ΨDt at the PZT surface and the second coverslip interface. The dashed curves in (a) indicate the beam profile.

Fig. 3
Fig. 3

PRI analysis of a live HT29 cell monolayer grown on a coverslip. The graph shows changes in cell thickness when the osmolality is changed from its normal value to 85% (hypotonic) and 115% (hypertonic) at t=230 s. The dashed curves indicate the beam profile.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ψCWt=mod2π(argRCW,1expikCW20tvdt+RCW,2expikCW20tvdt-nCWL)mod2πargRCW,1expikCW20tvdt=mod2πkCW20tvdt,
ψLCt=mod2π(argRLC,2expikLC20tvdt-nLCL×exp-a20tvdt-nLCL2)=mod2πkLC20tvdt-nLCL,
ψD=ψCW-2ψLC=mod2π4kLCnLCL.

Metrics