Abstract

Spectral hole-burning (SHB) technology is considered for >10GHz instantaneous bandwidth signal-processing applications. In this context we report on what is believed to be the first demonstration of a SHB microwave spectrometer. A set of gratings engraved in a SHB crystal is used to filter one sideband of the optically carried microwave signal. The setup is confined to narrow-bandwidth operation, over a 35-MHz-wide interval. The first findings confirm the validity of the architecture in terms of spectral resolution, angular channel separation, and simultaneous detection of multiple spectral lines.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. F. van Dishoek and F. P. Helmich, in Proceedings of the 30th ESLAB Symposium on Submillimetre and Far-Infrared Space Instrumentation, E. J. Rolfe, ed., ESA SP-388 (European Space Agency, Munich, Germany, 1996), pp. 3–12.
  2. T. L. Harris, Y. Sun, W. R. Babbitt, R. L. Cone, J. A. Ritcey, and R. W. Equall, Opt. Lett. 25, 85 (2000).
    [CrossRef]
  3. M. Tian, F. Grelet, I. Lorgeré, J. P. Galaup, and J.-L. Le Gouët, J. Opt. Soc. Am. B 16, 74 (1999).
    [CrossRef]
  4. T. Wang, H. Lin, and T. W. Mossberg, Opt. Lett. 20, 2541 (1995).
    [CrossRef]
  5. T. L. Harris, Y. Sun, R. L. Cone, R. Macfarlane, and R. W. Equall, Opt. Lett. 23, 636 (1998).
    [CrossRef]
  6. K. D. Merkel and W. R. Babbitt, Opt. Lett. 23, 528 (1998).
    [CrossRef]
  7. J. A. Shirley, R. J. Hall, and A. C. Eckbreth, Opt. Lett. 5, 380 (1980).
    [CrossRef]
  8. L. Ménager, L. Cabaret, I. Lorgeré, and J.-L. Le Gouët, Opt. Lett. 25, 1246 (2000).
    [CrossRef]

2000 (2)

1999 (1)

1998 (2)

1995 (1)

1980 (1)

Babbitt, W. R.

Cabaret, L.

Cone, R. L.

Eckbreth, A. C.

Equall, R. W.

Galaup, J. P.

Grelet, F.

Hall, R. J.

Harris, T. L.

Helmich, F. P.

E. F. van Dishoek and F. P. Helmich, in Proceedings of the 30th ESLAB Symposium on Submillimetre and Far-Infrared Space Instrumentation, E. J. Rolfe, ed., ESA SP-388 (European Space Agency, Munich, Germany, 1996), pp. 3–12.

Le Gouët, J.-L.

Lin, H.

Lorgeré, I.

Macfarlane, R.

Ménager, L.

Merkel, K. D.

Mossberg, T. W.

Ritcey, J. A.

Shirley, J. A.

Sun, Y.

Tian, M.

van Dishoek, E. F.

E. F. van Dishoek and F. P. Helmich, in Proceedings of the 30th ESLAB Symposium on Submillimetre and Far-Infrared Space Instrumentation, E. J. Rolfe, ed., ESA SP-388 (European Space Agency, Munich, Germany, 1996), pp. 3–12.

Wang, T.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Overall beam arrangement, with the spectrometer principle shown in the inset. The modulator (M) transfers the rf signal [S(t)] onto the monochromatic carrier delivered by the laser (DL). Carrier frequency ν combines with the rf components at frequency i in the two sidebands. Each component at frequency ν+i is diffracted in a specific direction by the gratings engraved upon the SHB plate.

Fig. 2
Fig. 2

Experiment setup. A diode laser (DL) delivers the beams #1, #2, and #3. An acousto-optic deflector (D) and shifter (S) control the engraving beams. The rf signal is transferred onto the optical carrier with the help of a modulator (M). In a realistic application M is a MZM. In the experiment, M is an AOM. The deflected beam is detected on a photodiode array (PDA).

Fig. 3
Fig. 3

Spectral analysis of a single-frequency rf signal as detected on the PDA. The profile does not broaden when the probe beam power is varied from 25 μW in (a) to 770 μW in (c). The duration of the signal pulse is 10 μs. The detected intensity saturation as a function of the probe beam power is shown in (b).

Fig. 4
Fig. 4

(b) Spectral analysis of (a) an eight-component rf signal. The deflection angle of the detected beam is proportional to the rf shift.

Metrics