Abstract

By controlling the internal loss of a ring resonator near critical coupling, we demonstrate control of the transmitted power in a fiber that is coupled to the resonator. We also demonstrate wavelength-selective optical amplification and oscillation.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. F. J. Levi, R. E. Slusher, S. L. McCall, J. L. Glass, S. J. Pearton, and R. A. Logan, “Directional light coupling from microdisk lasers,” Appl. Phys. Lett. 62, 561–563 (1993).
    [CrossRef]
  2. G. Griffel and S. Arnold, “Synthesis of variable optical filters using meso-optical ring resonator arrays,” in Proceedings of the IEEE LEOS Annual Meeting, Vol. 2 (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1997), p. 165.
  3. B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
    [CrossRef]
  4. Y. Xu, Y. Li, R. K. Lee, and A. Yariv, “Scattering-theory analysis of waveguide-resonator coupling,” Phys. Rev. E 62, 7389–7404 (2000).
    [CrossRef]
  5. A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric wave-guides,” Electron. Lett. 36, 321–322 (2000).
    [CrossRef]
  6. B. E. Little, H. A. Haus, J. S. Foresi, L. C. Kimerling, E. P. Ippen, and D. J. Ripin, “Wavelength switching and routing using absorption and resonance,” IEEE Photon. Technol. Lett. 10, 816–818 (1998).
    [CrossRef]
  7. M. Cai and K. Vahala, “Highly efficient optical power transfer to whispering-gallery modes by use of a symmetrical dual-coupling configuration,” Opt. Lett. 25, 260–262 (2000).
    [CrossRef]
  8. J. C. Slater, Microwave Electronics (Van Nostrand, New York, 1950).

2000

Y. Xu, Y. Li, R. K. Lee, and A. Yariv, “Scattering-theory analysis of waveguide-resonator coupling,” Phys. Rev. E 62, 7389–7404 (2000).
[CrossRef]

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric wave-guides,” Electron. Lett. 36, 321–322 (2000).
[CrossRef]

M. Cai and K. Vahala, “Highly efficient optical power transfer to whispering-gallery modes by use of a symmetrical dual-coupling configuration,” Opt. Lett. 25, 260–262 (2000).
[CrossRef]

1998

B. E. Little, H. A. Haus, J. S. Foresi, L. C. Kimerling, E. P. Ippen, and D. J. Ripin, “Wavelength switching and routing using absorption and resonance,” IEEE Photon. Technol. Lett. 10, 816–818 (1998).
[CrossRef]

1997

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
[CrossRef]

1993

A. F. J. Levi, R. E. Slusher, S. L. McCall, J. L. Glass, S. J. Pearton, and R. A. Logan, “Directional light coupling from microdisk lasers,” Appl. Phys. Lett. 62, 561–563 (1993).
[CrossRef]

Arnold, S.

G. Griffel and S. Arnold, “Synthesis of variable optical filters using meso-optical ring resonator arrays,” in Proceedings of the IEEE LEOS Annual Meeting, Vol. 2 (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1997), p. 165.

Cai, M.

Chu, S. T.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
[CrossRef]

Foresi, J.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
[CrossRef]

Foresi, J. S.

B. E. Little, H. A. Haus, J. S. Foresi, L. C. Kimerling, E. P. Ippen, and D. J. Ripin, “Wavelength switching and routing using absorption and resonance,” IEEE Photon. Technol. Lett. 10, 816–818 (1998).
[CrossRef]

Glass, J. L.

A. F. J. Levi, R. E. Slusher, S. L. McCall, J. L. Glass, S. J. Pearton, and R. A. Logan, “Directional light coupling from microdisk lasers,” Appl. Phys. Lett. 62, 561–563 (1993).
[CrossRef]

Griffel, G.

G. Griffel and S. Arnold, “Synthesis of variable optical filters using meso-optical ring resonator arrays,” in Proceedings of the IEEE LEOS Annual Meeting, Vol. 2 (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1997), p. 165.

Haus, H. A.

B. E. Little, H. A. Haus, J. S. Foresi, L. C. Kimerling, E. P. Ippen, and D. J. Ripin, “Wavelength switching and routing using absorption and resonance,” IEEE Photon. Technol. Lett. 10, 816–818 (1998).
[CrossRef]

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
[CrossRef]

Ippen, E. P.

B. E. Little, H. A. Haus, J. S. Foresi, L. C. Kimerling, E. P. Ippen, and D. J. Ripin, “Wavelength switching and routing using absorption and resonance,” IEEE Photon. Technol. Lett. 10, 816–818 (1998).
[CrossRef]

Kimerling, L. C.

B. E. Little, H. A. Haus, J. S. Foresi, L. C. Kimerling, E. P. Ippen, and D. J. Ripin, “Wavelength switching and routing using absorption and resonance,” IEEE Photon. Technol. Lett. 10, 816–818 (1998).
[CrossRef]

Laine, J.-P.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
[CrossRef]

Lee, R. K.

Y. Xu, Y. Li, R. K. Lee, and A. Yariv, “Scattering-theory analysis of waveguide-resonator coupling,” Phys. Rev. E 62, 7389–7404 (2000).
[CrossRef]

Levi, A. F. J.

A. F. J. Levi, R. E. Slusher, S. L. McCall, J. L. Glass, S. J. Pearton, and R. A. Logan, “Directional light coupling from microdisk lasers,” Appl. Phys. Lett. 62, 561–563 (1993).
[CrossRef]

Li, Y.

Y. Xu, Y. Li, R. K. Lee, and A. Yariv, “Scattering-theory analysis of waveguide-resonator coupling,” Phys. Rev. E 62, 7389–7404 (2000).
[CrossRef]

Little, B. E.

B. E. Little, H. A. Haus, J. S. Foresi, L. C. Kimerling, E. P. Ippen, and D. J. Ripin, “Wavelength switching and routing using absorption and resonance,” IEEE Photon. Technol. Lett. 10, 816–818 (1998).
[CrossRef]

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
[CrossRef]

Logan, R. A.

A. F. J. Levi, R. E. Slusher, S. L. McCall, J. L. Glass, S. J. Pearton, and R. A. Logan, “Directional light coupling from microdisk lasers,” Appl. Phys. Lett. 62, 561–563 (1993).
[CrossRef]

McCall, S. L.

A. F. J. Levi, R. E. Slusher, S. L. McCall, J. L. Glass, S. J. Pearton, and R. A. Logan, “Directional light coupling from microdisk lasers,” Appl. Phys. Lett. 62, 561–563 (1993).
[CrossRef]

Pearton, S. J.

A. F. J. Levi, R. E. Slusher, S. L. McCall, J. L. Glass, S. J. Pearton, and R. A. Logan, “Directional light coupling from microdisk lasers,” Appl. Phys. Lett. 62, 561–563 (1993).
[CrossRef]

Ripin, D. J.

B. E. Little, H. A. Haus, J. S. Foresi, L. C. Kimerling, E. P. Ippen, and D. J. Ripin, “Wavelength switching and routing using absorption and resonance,” IEEE Photon. Technol. Lett. 10, 816–818 (1998).
[CrossRef]

Slater, J. C.

J. C. Slater, Microwave Electronics (Van Nostrand, New York, 1950).

Slusher, R. E.

A. F. J. Levi, R. E. Slusher, S. L. McCall, J. L. Glass, S. J. Pearton, and R. A. Logan, “Directional light coupling from microdisk lasers,” Appl. Phys. Lett. 62, 561–563 (1993).
[CrossRef]

Vahala, K.

Xu, Y.

Y. Xu, Y. Li, R. K. Lee, and A. Yariv, “Scattering-theory analysis of waveguide-resonator coupling,” Phys. Rev. E 62, 7389–7404 (2000).
[CrossRef]

Yariv, A.

Y. Xu, Y. Li, R. K. Lee, and A. Yariv, “Scattering-theory analysis of waveguide-resonator coupling,” Phys. Rev. E 62, 7389–7404 (2000).
[CrossRef]

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric wave-guides,” Electron. Lett. 36, 321–322 (2000).
[CrossRef]

Appl. Phys. Lett.

A. F. J. Levi, R. E. Slusher, S. L. McCall, J. L. Glass, S. J. Pearton, and R. A. Logan, “Directional light coupling from microdisk lasers,” Appl. Phys. Lett. 62, 561–563 (1993).
[CrossRef]

Electron. Lett.

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric wave-guides,” Electron. Lett. 36, 321–322 (2000).
[CrossRef]

IEEE Photon. Technol. Lett.

B. E. Little, H. A. Haus, J. S. Foresi, L. C. Kimerling, E. P. Ippen, and D. J. Ripin, “Wavelength switching and routing using absorption and resonance,” IEEE Photon. Technol. Lett. 10, 816–818 (1998).
[CrossRef]

J. Lightwave Technol.

B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J.-P. Laine, “Microring resonator channel dropping filters,” J. Lightwave Technol. 15, 998–1005 (1997).
[CrossRef]

Opt. Lett.

Phys. Rev. E

Y. Xu, Y. Li, R. K. Lee, and A. Yariv, “Scattering-theory analysis of waveguide-resonator coupling,” Phys. Rev. E 62, 7389–7404 (2000).
[CrossRef]

Other

G. Griffel and S. Arnold, “Synthesis of variable optical filters using meso-optical ring resonator arrays,” in Proceedings of the IEEE LEOS Annual Meeting, Vol. 2 (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1997), p. 165.

J. C. Slater, Microwave Electronics (Van Nostrand, New York, 1950).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup used to measure the fiber-ring–waveguide system. A fused coupler is used as the coupling mechanism. Erbium-doped fiber (ED) is used in the ring to allow loss or gain modulation. A wavelength-division multiplexer (WDM) is used to add the 980-nm pump, allowing control of the coupling characteristics. Inset, conventions used in referring to the resonator–waveguide system. The input port is a1, the output port is b1, the loss in the resonator is 1-α2, the coupling is t, and the round-trip phase delay from the resonator is θ. From energy conservation, t2+κ2=1 and a2=αexpiθb2.

Fig. 2
Fig. 2

Theoretical normalized power transmission as a function of internal cavity loss. The critically coupled point (zero transmission) occurs at α=t. In the undercoupled region, α<t, increasing the gain in the resonator up to the critically coupled condition decreases the power transmission.

Fig. 3
Fig. 3

Transmission spectrum of the ring resonator–waveguide system. The curve with α=0.74 when the transmission at resonance is -22 dB is a state near critical coupling. Near-unity transparency α=1.0 is observed when the 980-nm pump power into the ring is approximately 6.8  dBm. Frequency-selective amplification near the resonance frequency is observed when α>1. The dashed curve shows laser oscillation α=1/t, which was observed when the pump power coupled into the ring was 7.6 dBm.

Fig. 4
Fig. 4

Measurement of the transmission coefficient at resonance as a function of α. Critical coupling (in this case a -22dB transmission) as well as net gain is observed.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

b1a12=α2+t2-2αtcosθ1+α2t2-2αtcosθ,
b1b2=tκk*-t*a1a2,
b12=α-t21-αt2.

Metrics