Abstract

Conventional hydrogen loading of phosphosilicate optical fibers at relatively low temperatures (80 °C) is sufficient to enhance the fiber’s photosensitivity after hydrogen outdiffusion, allowing permanent Bragg grating structures to be produced. Thermal sensitization is proposed to be a major contributor to stable index change.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Canning, Opt. Fiber Technol. 6, 275 (2000).
    [CrossRef]
  2. M. Åslund and J. Canning, Opt. Lett. 25, 692 (2000).
    [CrossRef]
  3. J. Canning, M. Englund, and K. Sommer, postdeadline paper presented at the Conference on Optical Fibre Sensors (OFS 2000), Venice, Italy , October 11–13, 2000.
  4. J. Canning, M. Åslund, and P-F. Hu, Opt. Lett. 25, 1621 (2000).
    [CrossRef]
  5. J. Canning, K. Sommer, M. England, and S. Huntington, “Direct evidence of two types of UV-induced glass changes in silicate-based optical fibres,” Adv. Mater. (to be published).
  6. J. Canning, M. G. Sceats, H. G. Inglis, and P. Hill, Opt. Lett. 20, 2189 (1995).
    [CrossRef]
  7. M. Fokine and W. Margulis, Opt. Lett. 25, 302 (2000).
  8. Y. Mita, S. Matsushita, T. Yanase, and H. Nomura, Electron. Lett. 13, 55 (1977).

2000 (4)

1995 (1)

1977 (1)

Y. Mita, S. Matsushita, T. Yanase, and H. Nomura, Electron. Lett. 13, 55 (1977).

Åslund, M.

Canning, J.

J. Canning, Opt. Fiber Technol. 6, 275 (2000).
[CrossRef]

J. Canning, M. Åslund, and P-F. Hu, Opt. Lett. 25, 1621 (2000).
[CrossRef]

M. Åslund and J. Canning, Opt. Lett. 25, 692 (2000).
[CrossRef]

J. Canning, M. G. Sceats, H. G. Inglis, and P. Hill, Opt. Lett. 20, 2189 (1995).
[CrossRef]

J. Canning, K. Sommer, M. England, and S. Huntington, “Direct evidence of two types of UV-induced glass changes in silicate-based optical fibres,” Adv. Mater. (to be published).

J. Canning, M. Englund, and K. Sommer, postdeadline paper presented at the Conference on Optical Fibre Sensors (OFS 2000), Venice, Italy , October 11–13, 2000.

England, M.

J. Canning, K. Sommer, M. England, and S. Huntington, “Direct evidence of two types of UV-induced glass changes in silicate-based optical fibres,” Adv. Mater. (to be published).

Englund, M.

J. Canning, M. Englund, and K. Sommer, postdeadline paper presented at the Conference on Optical Fibre Sensors (OFS 2000), Venice, Italy , October 11–13, 2000.

Fokine, M.

Hill, P.

Hu, P-F.

Huntington, S.

J. Canning, K. Sommer, M. England, and S. Huntington, “Direct evidence of two types of UV-induced glass changes in silicate-based optical fibres,” Adv. Mater. (to be published).

Inglis, H. G.

Margulis, W.

Matsushita, S.

Y. Mita, S. Matsushita, T. Yanase, and H. Nomura, Electron. Lett. 13, 55 (1977).

Mita, Y.

Y. Mita, S. Matsushita, T. Yanase, and H. Nomura, Electron. Lett. 13, 55 (1977).

Nomura, H.

Y. Mita, S. Matsushita, T. Yanase, and H. Nomura, Electron. Lett. 13, 55 (1977).

Sceats, M. G.

Sommer, K.

J. Canning, K. Sommer, M. England, and S. Huntington, “Direct evidence of two types of UV-induced glass changes in silicate-based optical fibres,” Adv. Mater. (to be published).

J. Canning, M. Englund, and K. Sommer, postdeadline paper presented at the Conference on Optical Fibre Sensors (OFS 2000), Venice, Italy , October 11–13, 2000.

Yanase, T.

Y. Mita, S. Matsushita, T. Yanase, and H. Nomura, Electron. Lett. 13, 55 (1977).

Electron. Lett. (1)

Y. Mita, S. Matsushita, T. Yanase, and H. Nomura, Electron. Lett. 13, 55 (1977).

Opt. Fiber Technol. (1)

J. Canning, Opt. Fiber Technol. 6, 275 (2000).
[CrossRef]

Opt. Lett. (4)

Other (2)

J. Canning, K. Sommer, M. England, and S. Huntington, “Direct evidence of two types of UV-induced glass changes in silicate-based optical fibres,” Adv. Mater. (to be published).

J. Canning, M. Englund, and K. Sommer, postdeadline paper presented at the Conference on Optical Fibre Sensors (OFS 2000), Venice, Italy , October 11–13, 2000.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Transmission profile of a grating written into thermally sensitized phosphosilicate optical fiber. Resolution, 0.1  nm. The longer-wavelength bandgap is that attributed to core index change and is labeled A, whereas the shorter-wavelength bandgap is attributed to core–cladding interfacial index change and labeled B.

Fig. 2
Fig. 2

Evolution of index modulation as a function of fluence of the Bragg grating at the core (A; open squares) and at the core–cladding interface (B; filled squares).

Fig. 3
Fig. 3

Average index evolution as a function of fluence of Bragg gratings A (open squares) and B (filled squares) modes.

Fig. 4
Fig. 4

Decay of a 16-dB Bragg grating in hypersensitized fiber relative to temperature. Exposure is 30  min at each temperature. Filled squares, A; open squares, B; open triangles, photohypersensitized fiber.

Fig. 5
Fig. 5

Absorption profile: (a) pristine fiber, (b) fiber after thermal hypersensitization, (c) fiber after grating writing.

Metrics