Abstract

Coupling of the acousto-optic effect and the photorefractive effect in a magnesium-doped lithium niobate crystal was studied by a holographic recording technique. The process of self-interference that is due to the coupling of these two effects was observed. Our results demonstrate that beam splitting and deflection, holographic recording, and self-interference can occur simultaneously in one crystal.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Prokhorov and Y. S. Kuz’minov, Physics and Chemistry of Crystalline Lithium Niobate (Hilger, Bristol, UK, 1990).
  2. D. Psaltis, H. Lee, and G. Sirat, “Acousto-electro-optic light modulation,” Appl. Phys. Lett. 46, 215 (1985).
    [CrossRef]
  3. C. Decusatis and P. K. Das, “Theory of acousto-electrooptic interaction in anisotropic media, including polarization effects,” J. Opt. Soc. Am. A 4, 33 (1987).
  4. A. V. Scholtz, P. Das, and J. Urillo, “Coupled mode theory for the acousto-optic effect,” J. Opt. Soc. Am. 3, 74 (1986).
  5. D. Psaltis and F. Mok, “Holographic memories,” Sci. Am. 273, 70 (1995).
    [CrossRef]
  6. L. Hesselink, S. S. Orlov, A. Liu, A. Alella, D. Lande, and R. R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089 (1998).
    [CrossRef] [PubMed]
  7. G. Zhong, J. Jian, and Z. Wu, in 11th International Quantum Electronics Conference, IEEE catalog no.  80CH1561 (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1980), p. 631.
  8. J. Sapriel, Acousto-Optics (Wiley, New York, 1979), pp. 54–56.
  9. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991), pp. 802–804.
  10. P. Yeh, Introduction of Photorefractive Nonlinear Optics (Wiley, New York, 1993), pp. 134–146.

1998 (1)

L. Hesselink, S. S. Orlov, A. Liu, A. Alella, D. Lande, and R. R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089 (1998).
[CrossRef] [PubMed]

1995 (1)

D. Psaltis and F. Mok, “Holographic memories,” Sci. Am. 273, 70 (1995).
[CrossRef]

1987 (1)

C. Decusatis and P. K. Das, “Theory of acousto-electrooptic interaction in anisotropic media, including polarization effects,” J. Opt. Soc. Am. A 4, 33 (1987).

1986 (1)

A. V. Scholtz, P. Das, and J. Urillo, “Coupled mode theory for the acousto-optic effect,” J. Opt. Soc. Am. 3, 74 (1986).

1985 (1)

D. Psaltis, H. Lee, and G. Sirat, “Acousto-electro-optic light modulation,” Appl. Phys. Lett. 46, 215 (1985).
[CrossRef]

Alella, A.

L. Hesselink, S. S. Orlov, A. Liu, A. Alella, D. Lande, and R. R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089 (1998).
[CrossRef] [PubMed]

Das, P.

A. V. Scholtz, P. Das, and J. Urillo, “Coupled mode theory for the acousto-optic effect,” J. Opt. Soc. Am. 3, 74 (1986).

Das, P. K.

C. Decusatis and P. K. Das, “Theory of acousto-electrooptic interaction in anisotropic media, including polarization effects,” J. Opt. Soc. Am. A 4, 33 (1987).

Decusatis, C.

C. Decusatis and P. K. Das, “Theory of acousto-electrooptic interaction in anisotropic media, including polarization effects,” J. Opt. Soc. Am. A 4, 33 (1987).

Hesselink, L.

L. Hesselink, S. S. Orlov, A. Liu, A. Alella, D. Lande, and R. R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089 (1998).
[CrossRef] [PubMed]

Jian, J.

G. Zhong, J. Jian, and Z. Wu, in 11th International Quantum Electronics Conference, IEEE catalog no.  80CH1561 (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1980), p. 631.

Kuz’minov, Y. S.

A. M. Prokhorov and Y. S. Kuz’minov, Physics and Chemistry of Crystalline Lithium Niobate (Hilger, Bristol, UK, 1990).

Lande, D.

L. Hesselink, S. S. Orlov, A. Liu, A. Alella, D. Lande, and R. R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089 (1998).
[CrossRef] [PubMed]

Lee, H.

D. Psaltis, H. Lee, and G. Sirat, “Acousto-electro-optic light modulation,” Appl. Phys. Lett. 46, 215 (1985).
[CrossRef]

Liu, A.

L. Hesselink, S. S. Orlov, A. Liu, A. Alella, D. Lande, and R. R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089 (1998).
[CrossRef] [PubMed]

Mok, F.

D. Psaltis and F. Mok, “Holographic memories,” Sci. Am. 273, 70 (1995).
[CrossRef]

Neurgaonkar, R. R.

L. Hesselink, S. S. Orlov, A. Liu, A. Alella, D. Lande, and R. R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089 (1998).
[CrossRef] [PubMed]

Orlov, S. S.

L. Hesselink, S. S. Orlov, A. Liu, A. Alella, D. Lande, and R. R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089 (1998).
[CrossRef] [PubMed]

Prokhorov, A. M.

A. M. Prokhorov and Y. S. Kuz’minov, Physics and Chemistry of Crystalline Lithium Niobate (Hilger, Bristol, UK, 1990).

Psaltis, D.

D. Psaltis and F. Mok, “Holographic memories,” Sci. Am. 273, 70 (1995).
[CrossRef]

D. Psaltis, H. Lee, and G. Sirat, “Acousto-electro-optic light modulation,” Appl. Phys. Lett. 46, 215 (1985).
[CrossRef]

Saleh, B. E. A.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991), pp. 802–804.

Sapriel, J.

J. Sapriel, Acousto-Optics (Wiley, New York, 1979), pp. 54–56.

Scholtz, A. V.

A. V. Scholtz, P. Das, and J. Urillo, “Coupled mode theory for the acousto-optic effect,” J. Opt. Soc. Am. 3, 74 (1986).

Sirat, G.

D. Psaltis, H. Lee, and G. Sirat, “Acousto-electro-optic light modulation,” Appl. Phys. Lett. 46, 215 (1985).
[CrossRef]

Teich, M. C.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991), pp. 802–804.

Urillo, J.

A. V. Scholtz, P. Das, and J. Urillo, “Coupled mode theory for the acousto-optic effect,” J. Opt. Soc. Am. 3, 74 (1986).

Wu, Z.

G. Zhong, J. Jian, and Z. Wu, in 11th International Quantum Electronics Conference, IEEE catalog no.  80CH1561 (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1980), p. 631.

Yeh, P.

P. Yeh, Introduction of Photorefractive Nonlinear Optics (Wiley, New York, 1993), pp. 134–146.

Zhong, G.

G. Zhong, J. Jian, and Z. Wu, in 11th International Quantum Electronics Conference, IEEE catalog no.  80CH1561 (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1980), p. 631.

Appl. Phys. Lett. (1)

D. Psaltis, H. Lee, and G. Sirat, “Acousto-electro-optic light modulation,” Appl. Phys. Lett. 46, 215 (1985).
[CrossRef]

J. Opt. Soc. Am. (1)

A. V. Scholtz, P. Das, and J. Urillo, “Coupled mode theory for the acousto-optic effect,” J. Opt. Soc. Am. 3, 74 (1986).

J. Opt. Soc. Am. A (1)

C. Decusatis and P. K. Das, “Theory of acousto-electrooptic interaction in anisotropic media, including polarization effects,” J. Opt. Soc. Am. A 4, 33 (1987).

Sci. Am. (1)

D. Psaltis and F. Mok, “Holographic memories,” Sci. Am. 273, 70 (1995).
[CrossRef]

Science (1)

L. Hesselink, S. S. Orlov, A. Liu, A. Alella, D. Lande, and R. R. Neurgaonkar, “Photorefractive materials for nonvolatile volume holographic data storage,” Science 282, 1089 (1998).
[CrossRef] [PubMed]

Other (5)

G. Zhong, J. Jian, and Z. Wu, in 11th International Quantum Electronics Conference, IEEE catalog no.  80CH1561 (Institute of Electrical and Electronics Engineers, Piscataway, N.J., 1980), p. 631.

J. Sapriel, Acousto-Optics (Wiley, New York, 1979), pp. 54–56.

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991), pp. 802–804.

P. Yeh, Introduction of Photorefractive Nonlinear Optics (Wiley, New York, 1993), pp. 134–146.

A. M. Prokhorov and Y. S. Kuz’minov, Physics and Chemistry of Crystalline Lithium Niobate (Hilger, Bristol, UK, 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup: L, effective length of the electrode; B, a light shutter.

Fig. 2
Fig. 2

Diffraction pattern pictures with f=52.5 MHz and L=17.5 mm. (a) Beam splitting and deflection; (b) diffraction light pattern in the holographic recording experiment with reference light I2 reading the photorefractive grating and rf off; (c) diffraction light pattern in the self-interference process.

Fig. 3
Fig. 3

Dependence of acousto-optic deflection angles in the crystal on the frequency of the applied electric field.

Fig. 4
Fig. 4

Interference grating decay during the readout process by beam I2. Solid curve, result of fitting according to the relaxation Iexp-t/τ.

Fig. 5
Fig. 5

Evolution of 0th- and +2nd-order diffraction light in the self-interference process. The rf field is turned on at t=50 s.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δ1n2i=j=16PijSj+k=13γikEk,
Sj=k=13djkEk,
fM=2νs2/λL1/2,
fM=183.5 MHzL=12.0 mm=151.9 MHzL=17.5 mm=138.7 MHzL=21.0 mm,

Metrics