Abstract

We report what is believed to be the first demonstration that volume gratings diffract extreme-ultraviolet light (EUV) or soft x-rays into high orders approximately an order of magnitude more efficiently than predicted by classical thin-grating theory. At the 13-nm wavelength, copolymer grating structures with 200-nm period and aspect ratios of 10:1 achieved diffraction efficiencies of 11.2%, 15.3%, 11.5%, and 9.1% in the orders m of 2, 3, 4, and 5, respectively. In addition, the measured transmission spectra are consistent with electrodynamic calculations by coupled-wave theory. High-order diffraction can now be employed for substantially improved diffractive EUV and x-ray optics, e.g., highly resolving diffractive lenses and large-aperture condensers.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Kirz, J. Opt. Soc. Am. 74, 301 (1974).
  2. G. Schneider, Appl. Phys. Lett. 71, 2242 (1997).
    [CrossRef]
  3. N. M. Ceglio, A. M. Hawryluk, D. G. Stearns, M. Kuhne, and P. Muller, Opt. Lett. 13, 267 (1988).
    [CrossRef] [PubMed]
  4. G. Schneider, T. Schliebe, and H. Aschoff, J. Vac. Sci. Technol. B 13, 2809 (1995).
    [CrossRef]
  5. D. Hambach and G. Schneider, J. Vac. Sci. Technol. B 17, 3212 (1999).
    [CrossRef]
  6. T. K. Gaylord and M. G. Moharam, Proc. IEEE 73, 894 (1995).
    [CrossRef]
  7. B. L. Henke, E. M. Gullikson, and J. C. Davis, At. Data Nucl. Data Tables 54, 181 (1993).
    [CrossRef]
  8. J. H. Underwood and E. M. Gullikson, J. Electron. Spectrosc. Relat. Phenom. 92, 265 (1998).
    [CrossRef]
  9. M. Berglund, L. Rymell, M. Peuker, T. Wilhein, and H. M. Hertz, J. Microsc. (Oxford) 197, 268 (2000).
    [CrossRef]

2000 (1)

M. Berglund, L. Rymell, M. Peuker, T. Wilhein, and H. M. Hertz, J. Microsc. (Oxford) 197, 268 (2000).
[CrossRef]

1999 (1)

D. Hambach and G. Schneider, J. Vac. Sci. Technol. B 17, 3212 (1999).
[CrossRef]

1998 (1)

J. H. Underwood and E. M. Gullikson, J. Electron. Spectrosc. Relat. Phenom. 92, 265 (1998).
[CrossRef]

1997 (1)

G. Schneider, Appl. Phys. Lett. 71, 2242 (1997).
[CrossRef]

1995 (2)

G. Schneider, T. Schliebe, and H. Aschoff, J. Vac. Sci. Technol. B 13, 2809 (1995).
[CrossRef]

T. K. Gaylord and M. G. Moharam, Proc. IEEE 73, 894 (1995).
[CrossRef]

1993 (1)

B. L. Henke, E. M. Gullikson, and J. C. Davis, At. Data Nucl. Data Tables 54, 181 (1993).
[CrossRef]

1988 (1)

1974 (1)

J. Kirz, J. Opt. Soc. Am. 74, 301 (1974).

Aschoff, H.

G. Schneider, T. Schliebe, and H. Aschoff, J. Vac. Sci. Technol. B 13, 2809 (1995).
[CrossRef]

Berglund, M.

M. Berglund, L. Rymell, M. Peuker, T. Wilhein, and H. M. Hertz, J. Microsc. (Oxford) 197, 268 (2000).
[CrossRef]

Ceglio, N. M.

Davis, J. C.

B. L. Henke, E. M. Gullikson, and J. C. Davis, At. Data Nucl. Data Tables 54, 181 (1993).
[CrossRef]

Gaylord, T. K.

T. K. Gaylord and M. G. Moharam, Proc. IEEE 73, 894 (1995).
[CrossRef]

Gullikson, E. M.

J. H. Underwood and E. M. Gullikson, J. Electron. Spectrosc. Relat. Phenom. 92, 265 (1998).
[CrossRef]

B. L. Henke, E. M. Gullikson, and J. C. Davis, At. Data Nucl. Data Tables 54, 181 (1993).
[CrossRef]

Hambach, D.

D. Hambach and G. Schneider, J. Vac. Sci. Technol. B 17, 3212 (1999).
[CrossRef]

Hawryluk, A. M.

Henke, B. L.

B. L. Henke, E. M. Gullikson, and J. C. Davis, At. Data Nucl. Data Tables 54, 181 (1993).
[CrossRef]

Hertz, H. M.

M. Berglund, L. Rymell, M. Peuker, T. Wilhein, and H. M. Hertz, J. Microsc. (Oxford) 197, 268 (2000).
[CrossRef]

Kirz, J.

J. Kirz, J. Opt. Soc. Am. 74, 301 (1974).

Kuhne, M.

Moharam, M. G.

T. K. Gaylord and M. G. Moharam, Proc. IEEE 73, 894 (1995).
[CrossRef]

Muller, P.

Peuker, M.

M. Berglund, L. Rymell, M. Peuker, T. Wilhein, and H. M. Hertz, J. Microsc. (Oxford) 197, 268 (2000).
[CrossRef]

Rymell, L.

M. Berglund, L. Rymell, M. Peuker, T. Wilhein, and H. M. Hertz, J. Microsc. (Oxford) 197, 268 (2000).
[CrossRef]

Schliebe, T.

G. Schneider, T. Schliebe, and H. Aschoff, J. Vac. Sci. Technol. B 13, 2809 (1995).
[CrossRef]

Schneider, G.

D. Hambach and G. Schneider, J. Vac. Sci. Technol. B 17, 3212 (1999).
[CrossRef]

G. Schneider, Appl. Phys. Lett. 71, 2242 (1997).
[CrossRef]

G. Schneider, T. Schliebe, and H. Aschoff, J. Vac. Sci. Technol. B 13, 2809 (1995).
[CrossRef]

Stearns, D. G.

Underwood, J. H.

J. H. Underwood and E. M. Gullikson, J. Electron. Spectrosc. Relat. Phenom. 92, 265 (1998).
[CrossRef]

Wilhein, T.

M. Berglund, L. Rymell, M. Peuker, T. Wilhein, and H. M. Hertz, J. Microsc. (Oxford) 197, 268 (2000).
[CrossRef]

Appl. Phys. Lett. (1)

G. Schneider, Appl. Phys. Lett. 71, 2242 (1997).
[CrossRef]

At. Data Nucl. Data Tables (1)

B. L. Henke, E. M. Gullikson, and J. C. Davis, At. Data Nucl. Data Tables 54, 181 (1993).
[CrossRef]

J. Electron. Spectrosc. Relat. Phenom. (1)

J. H. Underwood and E. M. Gullikson, J. Electron. Spectrosc. Relat. Phenom. 92, 265 (1998).
[CrossRef]

J. Microsc. (Oxford) (1)

M. Berglund, L. Rymell, M. Peuker, T. Wilhein, and H. M. Hertz, J. Microsc. (Oxford) 197, 268 (2000).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Kirz, J. Opt. Soc. Am. 74, 301 (1974).

J. Vac. Sci. Technol. B (2)

G. Schneider, T. Schliebe, and H. Aschoff, J. Vac. Sci. Technol. B 13, 2809 (1995).
[CrossRef]

D. Hambach and G. Schneider, J. Vac. Sci. Technol. B 17, 3212 (1999).
[CrossRef]

Opt. Lett. (1)

Proc. IEEE (1)

T. K. Gaylord and M. G. Moharam, Proc. IEEE 73, 894 (1995).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Model of a grating with period Λ and thickness t described by the local dielectric constant ϵx,z. Plane-wave illumination under an angle of incidence Θ is assumed. Inside the grating the electrical field is described by a sum of plane waves with wave vectors ρm. (b) Scanning electron micrograph showing the profile of a copolymer grating with 700-nm thickness.

Fig. 2
Fig. 2

Calculated diffraction efficiency of a copolymer grating with Λ=200 nm, L/Λ=0.60, and t=700 nm for different tilt angles Θ. As Θ is increased, energy is transferred into high diffraction orders.

Fig. 3
Fig. 3

Measured diffraction spectra of a copolymer grating with Λ=200 nm and t700 nm at 13-nm wavelength. We chose the angle of incidence Θ to maximize the respective order of diffraction. The observed diffraction patterns match the theoretical spectra shown in Fig.  2.

Tables (1)

Tables Icon

Table 1 Diffraction Efficiency (%) of Different Orders m Obtained from Thin Grating Theory (ηmTGT), Coupled-Wave Theory (ηmCWT), and Measurements (ηmEXP)a

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

2Ex,z-k02ϵ2+ϵ1-ϵ2LΛ1+2h=1sinchπLΛ×coshG·rEx,z=0,
Ex,z=E0m=-Amzexp-iρm,xx+ρm,zz.
2iρm,zdAmzdz+ρm2+k02ϵ¯Amz=-k02LΛ×ϵ1-ϵ2h=1sinchπLΛAm+hz+Am-hz.

Metrics