Abstract

We demonstrate the fabrication of an all-dielectric omnidirectional mirror for visible frequencies. The dielectric reflector consists of a stack of 19 alternating layers of tin (IV) sulfide and silica. Using a combination of thermal evaporation (for tin sulfide) and thick electron-beam evaporation (for silica), we have achieved a refractive-index contrast of 2.6/1.46, one of the highest refractive-index contrasts demonstrated in one-dimensional photonic bandgap systems designed for the visible frequency range. The tin sulfide–silica material system developed allowed the formation of a broadband visible reflector with an omnidirectional range greater than 10%. Possible applications of the system include efficient reflectors, high-frequency waveguides for communications and power delivery, and high-Q cavities.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
    [CrossRef] [PubMed]
  2. S. John, Phys. Rev. Lett. 58, 2486 (1987).
    [CrossRef] [PubMed]
  3. J. D. Joannopoulos, R. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, Princeton, N.J., 1995).
  4. S. Noda, Physica B 279, 142 (2000).
    [CrossRef]
  5. S. Y. Lin and J. G. Fleming, J. Lightwave Technol. 24, 49 (1999).
  6. J. N. Winn, Y. Fink, S. Fan, and J. D. Joannopoulos, Opt. Lett. 23, 1573 (1998).
    [CrossRef]
  7. Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, Science 282, 1679 (1998).
    [CrossRef] [PubMed]
  8. D. N. Chigrin, A. V. Lavrinenko, D. A. Yarotsky, and S. V. Gaponenko, J. Lightwave Technol. 17, 2018 (1999).
    [CrossRef]
  9. For an omnidirectional structure there exists an optimum value of n=1.44 for the low-refractive-index layer. For the high-refractive-index material a minimum value of n=2.2 is required for omnidirectionality.
  10. S. Mandalidis, J. A. Kalomiros, K. Kambas, and A. N. Anagnostopoulos, J. Mater. Sci. 31, 5975 (1996).
    [CrossRef]
  11. P. A. Lee, G. Said, R. Davis, and T. H. Lim, J. Phys. Chem. Solids 30, 2719 (1989).
  12. K. Kawano, R. Nakata, and M. Sumita, J. Phys. D 22, 136 (1989).
    [CrossRef]
  13. M. Müller, R. Zentel, T. Maka, S. G. Romanov, and C. M. Sotomayor Torres, Adv. Mater. 12, 20 (2000).
    [CrossRef]
  14. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, Boston, 1999), Vol.  II, Chap.  3.
  15. A common example of this is seen in titania TiO2, in which the bulk crystal refractive-index value is n∼2.8, whereas the thin-film refractive-index value is n∼2.3.
  16. The calculations were done with the transfer matrix method described by F. Abeles, Ann. Phys. 5, 706 (1950), with the film parameters.
  17. The absolute reflectivity measurement was made with a 50/50 beam splitter that split the laser beam coming from the source. One of the split beams was focused directly into a powermeter, while the other split beam was focused into an identical detector after reflection from the mirror. The comparison of the power measured by the two detectors gave the absolute reflectivity value. Measurements were made for all angles at both polarizations.
  18. M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, and J. D. Joannopoulos, Science 289, 415 (2000).
    [CrossRef] [PubMed]

2000 (3)

S. Noda, Physica B 279, 142 (2000).
[CrossRef]

M. Müller, R. Zentel, T. Maka, S. G. Romanov, and C. M. Sotomayor Torres, Adv. Mater. 12, 20 (2000).
[CrossRef]

M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, and J. D. Joannopoulos, Science 289, 415 (2000).
[CrossRef] [PubMed]

1999 (2)

1998 (2)

J. N. Winn, Y. Fink, S. Fan, and J. D. Joannopoulos, Opt. Lett. 23, 1573 (1998).
[CrossRef]

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, Science 282, 1679 (1998).
[CrossRef] [PubMed]

1996 (1)

S. Mandalidis, J. A. Kalomiros, K. Kambas, and A. N. Anagnostopoulos, J. Mater. Sci. 31, 5975 (1996).
[CrossRef]

1989 (2)

P. A. Lee, G. Said, R. Davis, and T. H. Lim, J. Phys. Chem. Solids 30, 2719 (1989).

K. Kawano, R. Nakata, and M. Sumita, J. Phys. D 22, 136 (1989).
[CrossRef]

1987 (2)

E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
[CrossRef] [PubMed]

S. John, Phys. Rev. Lett. 58, 2486 (1987).
[CrossRef] [PubMed]

1950 (1)

The calculations were done with the transfer matrix method described by F. Abeles, Ann. Phys. 5, 706 (1950), with the film parameters.

Abeles, F.

The calculations were done with the transfer matrix method described by F. Abeles, Ann. Phys. 5, 706 (1950), with the film parameters.

Anagnostopoulos, A. N.

S. Mandalidis, J. A. Kalomiros, K. Kambas, and A. N. Anagnostopoulos, J. Mater. Sci. 31, 5975 (1996).
[CrossRef]

Chen, C.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, Science 282, 1679 (1998).
[CrossRef] [PubMed]

Chigrin, D. N.

Davis, R.

P. A. Lee, G. Said, R. Davis, and T. H. Lim, J. Phys. Chem. Solids 30, 2719 (1989).

Fan, S.

M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, and J. D. Joannopoulos, Science 289, 415 (2000).
[CrossRef] [PubMed]

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, Science 282, 1679 (1998).
[CrossRef] [PubMed]

J. N. Winn, Y. Fink, S. Fan, and J. D. Joannopoulos, Opt. Lett. 23, 1573 (1998).
[CrossRef]

Fink, Y.

M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, and J. D. Joannopoulos, Science 289, 415 (2000).
[CrossRef] [PubMed]

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, Science 282, 1679 (1998).
[CrossRef] [PubMed]

J. N. Winn, Y. Fink, S. Fan, and J. D. Joannopoulos, Opt. Lett. 23, 1573 (1998).
[CrossRef]

Fleming, J. G.

S. Y. Lin and J. G. Fleming, J. Lightwave Technol. 24, 49 (1999).

Gaponenko, S. V.

Ibanescu, M.

M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, and J. D. Joannopoulos, Science 289, 415 (2000).
[CrossRef] [PubMed]

Joannopoulos, J. D.

M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, and J. D. Joannopoulos, Science 289, 415 (2000).
[CrossRef] [PubMed]

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, Science 282, 1679 (1998).
[CrossRef] [PubMed]

J. N. Winn, Y. Fink, S. Fan, and J. D. Joannopoulos, Opt. Lett. 23, 1573 (1998).
[CrossRef]

J. D. Joannopoulos, R. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, Princeton, N.J., 1995).

John, S.

S. John, Phys. Rev. Lett. 58, 2486 (1987).
[CrossRef] [PubMed]

Kalomiros, J. A.

S. Mandalidis, J. A. Kalomiros, K. Kambas, and A. N. Anagnostopoulos, J. Mater. Sci. 31, 5975 (1996).
[CrossRef]

Kambas, K.

S. Mandalidis, J. A. Kalomiros, K. Kambas, and A. N. Anagnostopoulos, J. Mater. Sci. 31, 5975 (1996).
[CrossRef]

Kawano, K.

K. Kawano, R. Nakata, and M. Sumita, J. Phys. D 22, 136 (1989).
[CrossRef]

Lavrinenko, A. V.

Lee, P. A.

P. A. Lee, G. Said, R. Davis, and T. H. Lim, J. Phys. Chem. Solids 30, 2719 (1989).

Lim, T. H.

P. A. Lee, G. Said, R. Davis, and T. H. Lim, J. Phys. Chem. Solids 30, 2719 (1989).

Lin, S. Y.

S. Y. Lin and J. G. Fleming, J. Lightwave Technol. 24, 49 (1999).

Maka, T.

M. Müller, R. Zentel, T. Maka, S. G. Romanov, and C. M. Sotomayor Torres, Adv. Mater. 12, 20 (2000).
[CrossRef]

Mandalidis, S.

S. Mandalidis, J. A. Kalomiros, K. Kambas, and A. N. Anagnostopoulos, J. Mater. Sci. 31, 5975 (1996).
[CrossRef]

Meade, R.

J. D. Joannopoulos, R. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, Princeton, N.J., 1995).

Michel, J.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, Science 282, 1679 (1998).
[CrossRef] [PubMed]

Müller, M.

M. Müller, R. Zentel, T. Maka, S. G. Romanov, and C. M. Sotomayor Torres, Adv. Mater. 12, 20 (2000).
[CrossRef]

Nakata, R.

K. Kawano, R. Nakata, and M. Sumita, J. Phys. D 22, 136 (1989).
[CrossRef]

Noda, S.

S. Noda, Physica B 279, 142 (2000).
[CrossRef]

Romanov, S. G.

M. Müller, R. Zentel, T. Maka, S. G. Romanov, and C. M. Sotomayor Torres, Adv. Mater. 12, 20 (2000).
[CrossRef]

Said, G.

P. A. Lee, G. Said, R. Davis, and T. H. Lim, J. Phys. Chem. Solids 30, 2719 (1989).

Sotomayor Torres, C. M.

M. Müller, R. Zentel, T. Maka, S. G. Romanov, and C. M. Sotomayor Torres, Adv. Mater. 12, 20 (2000).
[CrossRef]

Sumita, M.

K. Kawano, R. Nakata, and M. Sumita, J. Phys. D 22, 136 (1989).
[CrossRef]

Thomas, E. L.

M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, and J. D. Joannopoulos, Science 289, 415 (2000).
[CrossRef] [PubMed]

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, Science 282, 1679 (1998).
[CrossRef] [PubMed]

Winn, J. N.

J. N. Winn, Y. Fink, S. Fan, and J. D. Joannopoulos, Opt. Lett. 23, 1573 (1998).
[CrossRef]

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, Science 282, 1679 (1998).
[CrossRef] [PubMed]

J. D. Joannopoulos, R. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, Princeton, N.J., 1995).

Yablonovitch, E.

E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
[CrossRef] [PubMed]

Yarotsky, D. A.

Zentel, R.

M. Müller, R. Zentel, T. Maka, S. G. Romanov, and C. M. Sotomayor Torres, Adv. Mater. 12, 20 (2000).
[CrossRef]

Adv. Mater. (1)

M. Müller, R. Zentel, T. Maka, S. G. Romanov, and C. M. Sotomayor Torres, Adv. Mater. 12, 20 (2000).
[CrossRef]

Ann. Phys. (1)

The calculations were done with the transfer matrix method described by F. Abeles, Ann. Phys. 5, 706 (1950), with the film parameters.

J. Lightwave Technol. (2)

J. Mater. Sci. (1)

S. Mandalidis, J. A. Kalomiros, K. Kambas, and A. N. Anagnostopoulos, J. Mater. Sci. 31, 5975 (1996).
[CrossRef]

J. Phys. Chem. Solids (1)

P. A. Lee, G. Said, R. Davis, and T. H. Lim, J. Phys. Chem. Solids 30, 2719 (1989).

J. Phys. D (1)

K. Kawano, R. Nakata, and M. Sumita, J. Phys. D 22, 136 (1989).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. Lett. (2)

E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
[CrossRef] [PubMed]

S. John, Phys. Rev. Lett. 58, 2486 (1987).
[CrossRef] [PubMed]

Physica B (1)

S. Noda, Physica B 279, 142 (2000).
[CrossRef]

Science (2)

M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, and J. D. Joannopoulos, Science 289, 415 (2000).
[CrossRef] [PubMed]

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, Science 282, 1679 (1998).
[CrossRef] [PubMed]

Other (5)

J. D. Joannopoulos, R. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, Princeton, N.J., 1995).

For an omnidirectional structure there exists an optimum value of n=1.44 for the low-refractive-index layer. For the high-refractive-index material a minimum value of n=2.2 is required for omnidirectionality.

The absolute reflectivity measurement was made with a 50/50 beam splitter that split the laser beam coming from the source. One of the split beams was focused directly into a powermeter, while the other split beam was focused into an identical detector after reflection from the mirror. The comparison of the power measured by the two detectors gave the absolute reflectivity value. Measurements were made for all angles at both polarizations.

E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, Boston, 1999), Vol.  II, Chap.  3.

A common example of this is seen in titania TiO2, in which the bulk crystal refractive-index value is n∼2.8, whereas the thin-film refractive-index value is n∼2.3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the multilayer system, showing the layer parameters (nα and hα are the index of refraction and the thickness of layer α, respectively), the incident wave vector k, and the electromagnetic mode convention. E and B are the electric and magnetic fields, respectively.

Fig. 2
Fig. 2

Projected band structure of a multilayer film, together with the light line, showing an omnidirectional reflectance range in the first harmonic. Propagating states, light gray; evanescent states, white; omnidirectional reflectance range, black. The film parameters are n1=2.6 and n2=1.46, with thickness ratio h2/h1=115/80 for the tin sulfide–silica system.

Fig. 3
Fig. 3

RBS spectrum (curve with circles) of a 250-nm-thick layer of tin (IV) sulfide compared with a simulated spectrum (solid curve) of SnS1.85.

Fig. 4
Fig. 4

Cross-sectional scanning electron microscope micrograph of the 19-layer tin sulfide–silica multilayer structure. The bright regions correspond to tin sulfide. The dark regions correspond to silica.

Fig. 5
Fig. 5

Calculated (dashed traces) and measured (solid traces) reflectance spectra as a function of wavelength for TM and TE modes at normal, 45°, and 70° angles of incidence, showing an omnidirectional reflectivity band. A computer-generated color spectrum shows the visible colors ranging from 400 to 780  nm. The semitransparent red region shows the experimentally observed omnidirectional bandgap.

Metrics