Abstract

We demonstrate the fabrication of an all-dielectric omnidirectional mirror for visible frequencies. The dielectric reflector consists of a stack of 19 alternating layers of tin (IV) sulfide and silica. Using a combination of thermal evaporation (for tin sulfide) and thick electron-beam evaporation (for silica), we have achieved a refractive-index contrast of 2.6/1.46, one of the highest refractive-index contrasts demonstrated in one-dimensional photonic bandgap systems designed for the visible frequency range. The tin sulfide–silica material system developed allowed the formation of a broadband visible reflector with an omnidirectional range greater than 10%. Possible applications of the system include efficient reflectors, high-frequency waveguides for communications and power delivery, and high-Q cavities.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription