Abstract

We have used computer simulations to predict that the beam-steering efficiency of a common liquid-crystal diffraction grating will depend on which side is presented to the incident beam. The finite-difference time-domain method and the Helmholtz–Kirchhoff diffraction integral were utilized to simulate the performance of an idealized configuration of the grating.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Lieberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, Proc. IEEE 84, 268 (1996).
    [CrossRef]
  2. V. Dominic, A. Carney, and E. Watson, Opt. Eng. 35, 3371 (1996).
    [CrossRef]
  3. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Norwood, Mass., 1995).
  4. J.-P. Berenger, J. Comput. Phys. 114, 185 (1994).
    [CrossRef]
  5. M. Born and E. Wolf, eds., Principles of Optics, 6th ed. (Cambridge University, Cambridge, England, 1997).
  6. L. M. Blinov and V. G. Chigrinov, Electrooptic Effects in Liquid Crystal Materials (Springer-Verlag, Berlin, 1996).
  7. S. G. Lipson, H. Lipson, and D. S. Tannhauser, Optical Physics (Cambridge University, New York, 1995).
    [CrossRef]

1996 (2)

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Lieberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, Proc. IEEE 84, 268 (1996).
[CrossRef]

V. Dominic, A. Carney, and E. Watson, Opt. Eng. 35, 3371 (1996).
[CrossRef]

1994 (1)

J.-P. Berenger, J. Comput. Phys. 114, 185 (1994).
[CrossRef]

Berenger, J.-P.

J.-P. Berenger, J. Comput. Phys. 114, 185 (1994).
[CrossRef]

Blinov, L. M.

L. M. Blinov and V. G. Chigrinov, Electrooptic Effects in Liquid Crystal Materials (Springer-Verlag, Berlin, 1996).

Carney, A.

V. Dominic, A. Carney, and E. Watson, Opt. Eng. 35, 3371 (1996).
[CrossRef]

Chigrinov, V. G.

L. M. Blinov and V. G. Chigrinov, Electrooptic Effects in Liquid Crystal Materials (Springer-Verlag, Berlin, 1996).

Corkum, D. L.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Lieberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, Proc. IEEE 84, 268 (1996).
[CrossRef]

Dominic, V.

V. Dominic, A. Carney, and E. Watson, Opt. Eng. 35, 3371 (1996).
[CrossRef]

Dorschner, T. A.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Lieberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, Proc. IEEE 84, 268 (1996).
[CrossRef]

Friedman, L. J.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Lieberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, Proc. IEEE 84, 268 (1996).
[CrossRef]

Hobbs, D. S.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Lieberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, Proc. IEEE 84, 268 (1996).
[CrossRef]

Holz, M.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Lieberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, Proc. IEEE 84, 268 (1996).
[CrossRef]

Lieberman, S.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Lieberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, Proc. IEEE 84, 268 (1996).
[CrossRef]

Lipson, H.

S. G. Lipson, H. Lipson, and D. S. Tannhauser, Optical Physics (Cambridge University, New York, 1995).
[CrossRef]

Lipson, S. G.

S. G. Lipson, H. Lipson, and D. S. Tannhauser, Optical Physics (Cambridge University, New York, 1995).
[CrossRef]

McManamon, P. F.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Lieberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, Proc. IEEE 84, 268 (1996).
[CrossRef]

Nguyen, H. Q.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Lieberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, Proc. IEEE 84, 268 (1996).
[CrossRef]

Resler, D. P.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Lieberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, Proc. IEEE 84, 268 (1996).
[CrossRef]

Sharp, R. C.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Lieberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, Proc. IEEE 84, 268 (1996).
[CrossRef]

Taflove, A.

A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Norwood, Mass., 1995).

Tannhauser, D. S.

S. G. Lipson, H. Lipson, and D. S. Tannhauser, Optical Physics (Cambridge University, New York, 1995).
[CrossRef]

Watson, E.

V. Dominic, A. Carney, and E. Watson, Opt. Eng. 35, 3371 (1996).
[CrossRef]

Watson, E. A.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Lieberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, Proc. IEEE 84, 268 (1996).
[CrossRef]

J. Comput. Phys. (1)

J.-P. Berenger, J. Comput. Phys. 114, 185 (1994).
[CrossRef]

Opt. Eng. (1)

V. Dominic, A. Carney, and E. Watson, Opt. Eng. 35, 3371 (1996).
[CrossRef]

Proc. IEEE (1)

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Lieberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, Proc. IEEE 84, 268 (1996).
[CrossRef]

Other (4)

A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Norwood, Mass., 1995).

M. Born and E. Wolf, eds., Principles of Optics, 6th ed. (Cambridge University, Cambridge, England, 1997).

L. M. Blinov and V. G. Chigrinov, Electrooptic Effects in Liquid Crystal Materials (Springer-Verlag, Berlin, 1996).

S. G. Lipson, H. Lipson, and D. S. Tannhauser, Optical Physics (Cambridge University, New York, 1995).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

ECB-mode liquid-crystal diffraction grating.

Fig. 2
Fig. 2

Idealized ECB cell, the building block of the periodic grating. The liquid-crystal director varies only with x.

Fig. 3
Fig. 3

Far-field diffraction pattern of the ECB grating.

Fig. 4
Fig. 4

Far-field diffraction pattern of the inverted ECB grating.

Fig. 5
Fig. 5

Waves propagating through the ECB grating. Black represents the maximum negative field magnitude, and white represents the maximum positive magnitude.

Fig. 6
Fig. 6

Waves propagating through the inverted ECB grating. Black represents the maximum negative field magnitude, and white represents the maximum positive.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Ert=ϵ-1r×Hr,
-Hrt=μ0-1×Er,
neffx=L-xno+xne/L,
neffx=none/no2sin2θ+ne2cos2θ1/2.
mλ0=Lsinχ,
m=Δnd/λ0.

Metrics