Abstract

We experimentally demonstrate pure optical pulse picosecond shaping of narrow-bandwidth nanosecond pulses. The method used is based on the manipulation in the spectral domain of strongly chirped femtosecond pulses and on the use of either frequency addition or frequency difference.

© 2001 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Hecht, “Long-haul DWDM systems go the distance,” Laser Focus World 36(10), 125 (2000).
  2. J. B. Khurgin, J. U. Kang, and Y. J. Ding, “Ultrabroad-bandwidth electro-optic modulator based on cascaded Bragg gratings,” Opt. Lett. 25, 70–72 (2000).
    [CrossRef]
  3. B. Colombeau, M. Vampouille, and C. Froehly, “Shaping of short laser pulses by passive optical Fourier techniques,” Opt. Commun. 19, 201 (1976).
    [CrossRef]
  4. D. M. Marom, D. Panasenko, P-C. Sun, and Y. Fainman, “Spatial-temporal wave mixing for space-time conversion,” Opt. Lett. 24, 563–565 (1999).
    [CrossRef]
  5. A. C. L. Boscheron, C. J. Sauteret, and A. Migus, “Efficient broadband sum frequency based on controlled phase-modulated input fields: theory for 351  nm ultrabroadband or ultrashort-pulse generation,” J. Opt. Soc. Am. B 13, 818–826 (1996).
    [CrossRef]
  6. F. Raoult, A. C. L. Boscheron, D. Husson, C. Sauteret, and A. Migus, “Ultrashort, intense ultraviolet pulse generation by efficient frequency tripling and adapted phase matching,” Opt. Lett. 24, 354–356 (1999).
    [CrossRef]
  7. F. Raoult, A. C. L. Boscheron, D. Husson, C. Sauteret, A. Modenna, V. Malka, F. Dorchies, and A Migus, “Efficient generation of narrow-bandwidth picosecond pulses by frequency doubling of femtosecond chirped pulses,” Opt. Lett. 23, 1117–1119 (1998).
    [CrossRef]
  8. J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1975) p. 316.
  9. C. Dorrer, F. Salin, F. Verluise, and J. P. Huignard, “Programmable phase control of femtosecond pulses by use of a nonpixelated spatial light modulator,” Opt. Lett. 23, 709–711 (1998).
    [CrossRef]
  10. F. Verluise, V. Laude, J. P. Huignard, P. Tournois, and A. Migus, “Arbitrary dispersion control of ultrashort optical pulses with acoustic waves,” J. Opt. Soc. Am. B 17, 138–145 (2000).
    [CrossRef]

2000 (3)

1999 (2)

1998 (2)

1996 (1)

1976 (1)

B. Colombeau, M. Vampouille, and C. Froehly, “Shaping of short laser pulses by passive optical Fourier techniques,” Opt. Commun. 19, 201 (1976).
[CrossRef]

Boscheron, A. C. L.

Colombeau, B.

B. Colombeau, M. Vampouille, and C. Froehly, “Shaping of short laser pulses by passive optical Fourier techniques,” Opt. Commun. 19, 201 (1976).
[CrossRef]

Ding, Y. J.

Dorchies, F.

Dorrer, C.

Fainman, Y.

Froehly, C.

B. Colombeau, M. Vampouille, and C. Froehly, “Shaping of short laser pulses by passive optical Fourier techniques,” Opt. Commun. 19, 201 (1976).
[CrossRef]

Hecht, J.

J. Hecht, “Long-haul DWDM systems go the distance,” Laser Focus World 36(10), 125 (2000).

Huignard, J. P.

Husson, D.

Jackson, J. D.

J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1975) p. 316.

Kang, J. U.

Khurgin, J. B.

Laude, V.

Malka, V.

Marom, D. M.

Migus, A

Migus, A.

Modenna, A.

Panasenko, D.

Raoult, F.

Salin, F.

Sauteret, C.

Sauteret, C. J.

Sun, P-C.

Tournois, P.

Vampouille, M.

B. Colombeau, M. Vampouille, and C. Froehly, “Shaping of short laser pulses by passive optical Fourier techniques,” Opt. Commun. 19, 201 (1976).
[CrossRef]

Verluise, F.

J. Opt. Soc. Am. B (2)

Laser Focus World (1)

J. Hecht, “Long-haul DWDM systems go the distance,” Laser Focus World 36(10), 125 (2000).

Opt. Commun. (1)

B. Colombeau, M. Vampouille, and C. Froehly, “Shaping of short laser pulses by passive optical Fourier techniques,” Opt. Commun. 19, 201 (1976).
[CrossRef]

Opt. Lett. (5)

Other (1)

J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1975) p. 316.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Setup of the principle of all-optical programmable temporal shaping to produce a ω0 monochromatic pulse.

Fig. 2
Fig. 2

Phase-matching domain (gray areas) in a ω1,ω2 diagram, showing the slope m=k3-k1/k3-k2. The optimal adapted chirp law, Ω1t=Ω2t, appears with slope  1. The case shown here corresponds to a frequency-difference configuration.

Fig. 3
Fig. 3

Experimental setup for temporal shaping of pulses at ω0. We start with a 1-ns stretched pulse at the output of a chirped-pulse amplification system, split into two pulses undergoing adapted dispersion R1,R2. The first pulse is frequency doubled in a type  I KDP crystal of 2-cm length, and the second pulse is spectrally selected with an amplitude mask in a compressor. Then the pulses are frequency mixed in a type  II KDP crystal of 3-cm length, which produces a temporally shaped pulse at ω0.

Fig. 4
Fig. 4

(a) Pulse shaping at 528.5  nm by frequency addition: solid curve, initial temporal profile; dotted curve, shaped profile. (b) Nonresolved spectrum <0.1 nm.

Fig. 5
Fig. 5

(a) Pulse shaping at 1057  nm by frequency subtraction: solid curve, initial temporal profile; dotted curve, shaped profile. (b) Nonresolved spectrum <0.1 nm.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

Φω=Φω0+T1Ω+T22Ω2+T36Ω3+.
TΩ=dΦωdω=T1+T2Ω+T32Ω2+,
Ωt=1T2t-T32T23t2+.
Ω3=b1+b2t+γ1+γ2t2+.
Ω2=2b2t+2γ2t2+,
Ω3=2b2-b1t+2γ2-γ1t2+.
ki=kiω|ω=ωi
m=k3-k1k3-k2,
I3=I1I2sin2ΔkL/2Δk/22,
P=RΔω1/ω0,
Δω1max=2πω0Lk2-k1.

Metrics